文章编号: 1007-7294(2014)08-0967-06

基于耦合非线性模拟的深海钢悬链 线立管疲劳可靠性研究

王坤鹏, 薛鸿祥, 唐文勇

(上海交通大学 海洋工程国家重点实验室, 上海 200240)

摘要:充分考虑平台系统在复杂海况下的耦合非线性效应,分别采用反映海床吸力效应的线性滞后模型和传统线 性海床模型模拟立管触地区域和海床的相互作用,对深海钢悬链线立管进行非线性时域模拟,根据预报的触地点 响应采用确定性方法计算应力参数。根据基于 S-N 曲线及 Miner 准则建立极限状态方程,采用一阶可靠度方法研 究触地点的疲劳可靠度,结果表明,与传统模型相比,线性滞后模型得到触地点在低应力范围的循环次数较多而 在较高应力范围区域的循环次数较少,因而具有较高的可靠度指标。文中的立管疲劳可靠性分析将平台/系泊索/ 立管作为一个统一整体并包括海床对立管的吸力效应,有助于提高钢悬链线立管的疲劳可靠性设计的精度。 关键词:全耦合运动;海床吸力;一阶可靠度;应力参数 中图分类号: P752 文献标识码: A doi: 10.3969/j.issn.1007-7294.2014.08.011

Fatigue reliability study of deepwater steel catenary riser based on coupled and nonlinear simulation

WANG Kun-peng, XUE Hong-xiang, TANG Wen-yong (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract: Taking platform system coupled nonlinear effect in complicated sea state into account, and using linear hysteretic seabed model and traditional seabed model to simulate riser-soil interaction respectively, nonlinear time domain simulation is carried out for steel catenary riser, and deterministic method is used to calculate stress parameter through predicting touch-down point's (TDP's) response. According to the state functions based on S-N curve and Miner's rule, the TDP's fatigue reliability is studied through first order reliability method (FORM), and the result shows that the linear hysteretic model obtains more cycles in low stress range than traditional linear model, but less cycles in high range, which result in high-er reliability index. In this paper, platform/mooring/riser is considered as a whole and the seabed suction effect is included, so the present study is helpful to improve the accuracy of the fatigue reliability design of SCRs.

Key words: full coupled motion; seabed suction; first order reliability method; stress parameter

1 引 言

在深海油气开采中,钢悬链线立管得到广泛的应用,它与平台和系泊索构成的油气开采系统在风

收稿日期: 2013-12-12

基金项目:国家自然科学基金项目资助(51009089);高等学校博士学科点专项科研基金课题资助(20100073120017) 作者简介:王坤鹏(1986-),男,上海交通大学博士研究生;

通讯作者:薛鸿祥(1981-),男,博士,副教授 hongxiangxue@sjtu.edu.cn。

浪流作用下会产生复杂的耦合运动,由于平台系统的服务寿命一般为 20~30 年,交变载荷容易诱发立 管疲劳损伤,甚至在敏感部位发生疲劳破坏。

基于随机概率论的疲劳可靠性分析方法,能够较全面地考虑影响立管疲劳损伤的不确定性因素,因而成为立管疲劳评估的重要手段。Wirsching等回总结美国石油协会发起的为期4年的海洋结构物接头疲劳设计项目,依据S-N曲线和Miner准则提出了随机变量服从对数分布的疲劳可靠性计算公式,为海洋结构的疲劳可靠性研究奠定了基础;Nazir等回利用谱分析提出了计算顶端张紧式立管疲劳可靠性的方法,但研究中忽略了立管本身的非线性效应以及平台系统的耦合作用;Rizwan等回将平台的偏移施加到立管顶端,利用非线性有限元方法模拟张紧式立管的动态响应,并运用响应面法研究了立管的疲劳可靠度;Tapan^回将浮体一阶运动施加在钢悬链线顶端研究了立管的疲劳可靠度;林海花[©]结合S-N曲线和Miner准则采用Wirsching方法研究了涡激振动作用下立管的疲劳可靠度。

以往关于钢悬链线立管的研究通常对平台/立管的耦合效应和立管与海床之间的复杂作用进行简 化模拟,直接影响立管的响应预报的真实性。本文基于深海平台耦合水动力程序和反映海床吸力产生 和释放过程的触地单元对钢悬链线立管进行了耦合非线性模拟,利用耦合分析数据通过依据疲劳线 性累积损伤准则建立的极限状态方程采用一阶可靠度方法研究触地点的疲劳可靠性。

2 耦合模型

2.1 平台系统及海况

本文以某半潜平台生产系统为耦合分析对象,平台作业水深为 1219.2 m。平台长宽为 114 m×78 m,总排水量 51 700 t。平台系泊系统共有 12 根系泊索构成,系泊索采用了钢链—纤维缆—钢链的组 合形式。钢悬链线立管的主要参数见表 1。

表	1	钢悬	链线立	管相关	も参数

Tab.1 Principals of SCR

长度	悬挂角	湿重	干重	外径	内径	惯性力	拖曳力	设计寿命
(m)	(deg)	(kg/m)	(kg/m)	(m)	(m)	系数	系数	(year)
2 050	14	198.9	247.6	0.54	0.48	2.1	2.4	20

本文以南海文昌海域为平台工作海域, 选取表 2 中的 6 组短期海况进行耦合分析。 2.2 耦合分析方法

平台系统的时域耦合运动分析通过耦合 水动力分析软件 DNV/DeepC 完成,所需的相 关水动力系数通过基于三维势流理论的频域 分析程序 WADAM 得到,包括附加质量系 数、阻尼系数和波浪激励力等。水动力耦合分 析模型如图 1。 表 2 短期海况 Tab.2 Short-term sea state

海况编号	有义波高/m	谱峰周期/s	风速 m/s	遭遇概率
S1	1.25	5.3	8	53.4%
S2	1.75	5.3	9	18%
S3	2.25	5.3	10	11.7%
S4	2.75	5.3	11	7.73%
S5	3.75	7.5	12	5.16%
S6	4.25	7.5	13	4.01%

钢悬链线立管是具有较强非线性响应特性的柔性构件,在深海环境下这一特性尤为明显,故本文 将耦合响应分析得到的平台响应转化为立管顶端边界,对目标立管进行耦合非线性动力响应分析。

立管触地区域的管土作用非常复杂,Bridge 等⁶⁶根据全尺度试验提出了传统的海床刚度模型,如 图 2 中的单点划线,但该海床模型与真实的管土作用相差较大,不能反映管土作用的一些特殊现象。 本文作者根据 STRIDE JIP⁷⁷项目的研究结果提出了线性滞后的管土作用模型,该管土模型能充分反映 海床吸力的产生和释放过程,如图 2 中虚线所示,并根据该模型创建了模拟管土作用的触地单元,该 类单元的详细信息可参考文献[7]。

图 1 水动力耦合分析模型 Fig.1 Model of hydrodynamic coupled analysis

图 2 海床反力模型 Fig.2 Model of seabed resistance

3 疲劳可靠性分析方法

本文基于 S-N 曲线和 Miner 准则采用一阶可靠度方法进行钢悬链线立管疲劳可靠度的研究。假 定立管的疲劳寿命为 *T*,短期海况 *i* 下立管响应的模拟时间为 *T_i*,则疲劳破坏时的疲劳累积损伤度可 以表示如下:

$$\Delta = \sum_{i=1}^{N_S} \left(\frac{T}{T_i} p_i \sum_{j=1} \frac{n_{ij}}{N_{ij}} \right) \tag{1}$$

式中: N_s 为短期海况个数; p_i 为海况i的发生概率; N_{ij} 和 n_{ij} 分别表示海况i下疲劳极限应力 $S_{-1,ij}$ 对应的破坏循环次数和当前发生次数。

根据(1)式及 S-N 曲线模型,可以得到立管疲劳寿命的表达式为

$$T = \frac{\Delta \cdot A}{\Omega}$$
(2)

 Ω 为应力参数,表达式为

$$\boldsymbol{\Omega} = \sum_{i=1}^{N_{S}} \left(p_{i} f_{0i} E_{i} \left(S_{-1, ij}^{m} \right) \right)$$
(3)

$$E_{i}(S_{-1,ij}^{m}) = \frac{\sum_{j=1}^{m} (n_{ij} \cdot S_{-1,ij}^{m})}{N_{Ti}}$$
(4)

式中: $f_{0i} = N_{Ti}/T$ 为海况 *i*下应力循环的平均垮零频率; $E_i(S_{-1,ij}^m)$ 为第 *i* 海况各应力范围的 *m* 次方 S_{-1}^m 的 期望值; N_T 为海况 *i*下应力循环次数; A 和 *m* 为 S-N 曲线参数。

将 Δ 和 A 看做随机变量,分别考虑 Miner 准则和 S-N 曲线存在的误差,疲劳应力的计算中存在 的误差通过随机变量 B 表示,则疲劳寿命 T 的表达式如下:

$$T = \frac{\Delta \cdot A}{B^{m} \Omega}$$
(5)

本文一阶可靠度方法中采用的功能函数为

$$g = \frac{\Delta A}{B^{m} \Omega} - T_{s} \tag{6}$$

式中:T、为疲劳设计寿命。

4 可靠性评估

本文分别采用传统的 Bridge 线性模型和线性滞后管土模型模拟海床,对目标立管进行全局非线 性动力分析。图 3~4 分别为海况 6 零度浪向时触地点处的弯矩和轴向力响应时历曲线,可以看出线性 滞后模型对应的弯矩极值要大于 Bridge 模型,而弯矩循环的范围要偏小;两种模型预报的触地点的轴 向力近似相等。图 5 为触地点垂向位移曲线,为了便于比较,将 Bridge 模型对应的垂向位移进行了向 下平移。因为触地点向上运动时,线性滞后模型会施加向下的吸力,而 Bridge 模型的作用力则是向上 的,因而前者对应触地点的垂向位移范围明显小与后者,从而导致弯矩范围偏小;触地点向下运动时, 线性滞后模型的海床刚度要小于 Bridge 模型,因而下陷的深度偏大,因此对应较大的弯矩极值。

Fig.5 The curve of TDP's vertical displacement

对触地点处的应力时间历程进行雨流计数,并利用 Goodman 公式进行平均应力修正,得各海况下 有效应力循环平均垮零频率和 S_{\perp}^{m} 的期望值,见表 3。

从表 3 可以看出,随着短期海况恶劣程度的增加,有效应力循环平均垮零频率越来越大,由此表明 造成有效疲劳载荷作用频率显著上升;比较线性滞后模型和 Bridge 线性模型的计算结果,可以看出同 一海况下 Bridge 线性模型的有效应力循环稍少,而 S^m_1 的期望值要明显高于线性滞后模型,由此说明 Bridge 线性模型造成触地点的应力循环范围较大,而两者的差别主要有弯矩造成,图 3~4 说明了这一 点。为比较在不同海况下两种模型对疲劳损伤预报结果的影响,根据应力参数得到各海况下的年疲劳 累积损伤度,如图 6,可以看出,随着海况恶劣程度的增加,Bridge 线性模型的预报结果更加偏于保守。

海 识	遭遇概索	应力循环平均频率/Hz		S_{-1}^{m} 期望值/MPa ^m		
/평 //Ს	但這家平	Bridge线性模型	线性滞后模型	Bridge线性模型	线性滞后模型	
S1	53.4%	0.32	0.37	102.26	48.91	
S2	18%	0.35	0.41	150.42	76.92	
S3	11.7%	0.38	0.50	159.07	84.24	
S4	7.73%	0.45	0.62	252.43	158.04	
S5	5.16%	0.56	0.73	2 850.66	1 443.49	
S6	4.01%	0.60	0.75	5 007.21	3 054.12	
0.065 0.060 0.055 0.050 0.050 0.055 0.050 0.045 0.046 0.040 0.055 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.040 0.055 0.055 0.040 0.055 0.055 0.040 0.055 0.055 0.040 0.055 0.055 0.055 0.040 0.055 0.055 0.055 0.040 0.055 0.055 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.015 0.025 0.025 0.025 0.015 0.025 0.025 0.015 0.025 0.025 0.015 0.015 0.025 0.015 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.005 0.010 0.010 0.005 0.010 0.010 0.005 0.010 0.005 0.005 0.010 0.005 0		SSSS 线性滞后模型 SSSS Bridge线性模型	220 200 180 160 140 茶 太 灯 辺 切 切 切 切 切 切 切 140 - 秋 灯 辺 の - 180 160 - 140 - 秋 灯 辺 の - 120 - 月 の - 月 日 - 月 - 月 の - 月 日 - 月 - 月 の - 月 - 月 - 月 - 月 - 月 - 月 - 月 -	- the section of the	传统模型 线性滞后模型	
1(1.25, 5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	5 10 应力范围/M	15 20 Pa	

	表3	随机应力响应数据统计
Tab.3	Stati	stics of random stress response

图 7 不同应力范围的应力循环次数

Fig.6 Fatigue damage per year versus sea states Fig.7 The number of stress cycle versus different stress range

结合发生概率,将各海况下的有效应力循环进行线性叠加,得到不同有效应力范围下的应力循环 次数曲线,如图 7,可以看出,在低有效应力范围区域线性滞后模型造成触地点的应力循环次数明显高 于 Bridge 模型, 而在 5~10 MPa 应力范围内传统模型的应力循环次数略高, 在大于 10 MPa 的应力范 围区域两种模型的应力循环次数近似相等。

基于以上分析,本文对触地点进行疲劳可靠性评估,S-N曲线和 Miner 准则的相关参数来自文献 [4], 见表 4。

	Tab.4 Parameters of S-N model for reliability assessment					
	变 量	分布类型	中间值	变异系数		
	疲劳强度系数, <i>K</i>	对数正态分布	$\tilde{A} = 5.27 \times 10^{12}$	0.63		
	应力模拟误差,B	对数正态分布	\tilde{B} =1.00	0.20		
	疲劳累积损伤度, Δ	对数正态分布	$\widetilde{\Delta}$ =1.00	0.30		
	疲劳指数,m	常数	3.00			
根据(3)	式和表3可以得到传	统模型和线性	表5 立	管失效概率和可拿		
滞后模型的应	立力参数,然后采用一	阶二次矩法计	Tab.5 Pro	bability of riser	failure and	
算触地点的约	失效概率和可靠度指 标	示,见表 5。	reli	ability index		
对比两利	中模型,本文采用的线	性滞后模型计		Bridge线性模型	线性滞后模型	
算得到的触	地点的疲劳可靠度指;	标要高于保守	失效概率 P _f	2.91×10 ⁻⁵	5.17×10 ⁻⁶	
的 Bridge 线	性模型,这是由于线	生滞后模型更	可靠度指标 β	4.01	4.40	

21994-2015 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.	.net
--	------

真实地反映了立管与海床的作用,而后者明显放大了海床的刚度,使计算结果偏于保守。

5 结 论

平台生产系统是一个耦合的整体,将平台和立管隔离开来进行分析难以考虑耦合系统的非线性 响应效应。本文通过耦合时域分析得到平台的运动效应,并将其转化成立管的顶端边界条件,然后对 钢悬链线立管进行详细的非线性分析,其中立管与海床的作用分别采用线性滞后海床模型和传统的 海床模型进行模拟。根据耦合非线性分析得到了立管触地点的运动响应,本文进行疲劳可靠性分析, 得到如下结论:

(1) 线性滞后模型造成触地点的弯矩范围要低于 Bridge 线性模型,而弯矩极值要偏高,这是由触 地点的垂向运动范围以及下陷深度决定的;两种模型在触地点的轴向力近乎一致,所以疲劳应力的差 别主要来自弯矩。

(2) 尽管线性滞后模型造成触地点的有效应力循环总次数要高于传统模型,但是在较高应力区 域的循环次数要比传统模型少,导致应力参数较小,因而疲劳失效概率偏低。

(3)同 Bridge 线性海床模型相比,线性滞后模型能反映海床的吸力效应且刚度要更接近实际海 床刚度,所以得到的触地点响应更真实,疲劳可靠度指标也明显高于传统的保守模型,因此应用于钢 悬链线立管疲劳可靠性设计时,有助于提高设计精度。

参考文献:

- Wirsching, P. Fatigue reliability for offshore structures[J]. ASCE Journal of the Structural Division, 1984, 110(10): 2340– 2356.
- [2] Nazir M, Khan F, Amyotte P. Fatigue reliability analysis of deep water rigid marine risers associated with Morison-type wave loading[J]. Earth and Environment Science, 2008, 22(3): 379–390.
- [3] Rizwan A K, Ahmad S. Dynamic response and fatigue reliability analysis of marine riser under random loads[C]// Proceeding of ASME 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, California, USA, 2007: 183–191.
- [4] Tapan K S. Probability of fatigue failure in steel catenary risers in deep water[J]. Journal of Engineering Mechanics, 2006, 132(9): 1001–1006.
- [5] 林海花, 王言英, 隔水管随机响应疲劳可靠性分析[J]. 大连海事大学学报, 2008, 34(3): 72-75, 80.
- [6] 2H Offshore Engineering Ltd-"STRIDE JIP-Effects of riser/seabed interaction on SCRs" [R]. Report No.1500-RPT-008, 2002.
- [7] 王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(04): 585-589.