Gas and vapor adsorption in octacyanometallate-based frameworks \(\text{Mn}_2[M(\text{CN})_8] \) (\(M = \text{W, Mo} \)) with exposed \(\text{Mn}^{2+} \) sites

Aihua Yuan\(^a\)*, Hu Zhou\(^a,b\), Guowang Diao\(^b\), Peter D. Southon\(^c\), Cameron J. Kepert\(^c\)*, Lang Liu\(^d\)

\(^a\)School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
\(^b\)School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
\(^c\)School of Chemistry, University of Sydney, Sydney 2006, Australia
\(^d\)Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, China

Abstract

Dehydration of the isostructural three-dimensional (3D) octacyanometallate-based materials \(\text{Mn}_2\text{M(\text{CN})_8_7H}_2\text{O} \) (\(M = \text{Mo, W, 7H}_2\text{O} \)) generates robust porous frameworks (1 and 2). In the structure, the \(\text{M(\text{CN})_8_4} \) units are linked via octahedral \(\text{Mn}^{2+} \) centers to form an open 3D framework with 1D channels, in which the non-coordinated and coordinated water molecules are involved. The permanent porosities have been confirmed by thermogravimetric analysis, variable-temperature X-ray diffraction and Raman spectra, and adsorption (\(\text{H}_2\text{O, N}_2 \) and \(\text{H}_2 \)) measurements. \(\text{H}_2 \) adsorption at 1.1 bar and 77 K was 0.60 wt% for 1 and 0.49 wt% for 2. At initial loading \(\Delta H_{\text{ads}} \) has the value of ca. 10.0 kJ mol\(^{-1}\) for both materials, which represents the highest value reported for any cyanide-based assemblies. The high enthalpy can be attributed to the presence of coordinatively-unsaturated \(\text{Mn}^{2+} \) sites left exposed by the removal of coordinated water molecules in the structure.

Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Porous coordination frameworks have attracted much attention due to their high permanent porosity, exceptional structural and chemical tunability, and convenient modular synthesis [1–4]. Cyanide-based materials, especially porous Prussian blue analogs, have recently received particular attention in the area of hydrogen storage, owing to their chemical stability, small pores and resulting high volumetric storage densities, and their high density of exposed metal sites [5–8]; such sites have been shown to provide a novel mean for increasing the hydrogen physisorption enthalpy to favor hydrogen loading at non-extreme temperatures and pressures [9–11]. Recently, octacyanometallates \([\text{M(\text{CN})_8_3}^{\text{4-}}] \) (\(M = \text{Mo, W} \)) or \([\text{Nb(\text{CN})_8}^{\text{3-}}] \) have been found to be versatile building blocks...
and investigated extensively [12,13]. These species can form various geometrical structures, and their flexibilities may assist in the formation of a variety of three-dimensional (3D) open frameworks [14–17]. However, despite the first examples of octacyanometallate-based assemblies, $M_2[Mo(CN)_8]_2H_2O$ ($n = 2–9$) ($M = Mn$, Fe, Co, Ni, Cu, Zn) having been documented as far back as 1973 [18], relatively few studies have reported their porous properties [19,20], in comparison to the better known Prussian blue analogs. Moreover, it is worth noting that, to the best of our knowledge, the hydrogen gas and vapor adsorption properties of octacyanometallate-based frameworks have remained unexplored.

As a further probe of the role of coordinatively-ununsaturated metal centers in the H_2 uptake within cyanide-based materials, we report in this contribution the water, nitrogen, and hydrogen adsorption studies of the dehydrated frameworks $Mn_2M(CN)_8$ ($M = Mo, W, 2$) with exposed Mn^{2+} sites.

2. Experimental

Unless otherwise mentioned, all reactants were used as purchased, without further purification. A small glass vial (2 mL) containing the solid of $K_4[M(CN)_8]_2H_2O$ ($M = Mo, W$) [21,22] (0.15 mmol) was placed into a big glass vial (20 mL) containing the solid of $MnCl_2-2H_2O$ (0.30 mmol). The distilled water was poured slowly into above two vials till the liquid level was just over the small vial. Then the isopropyl alcohol was carefully layered on above solution, and then the big vial was sealed. Slow diffusion of the solutions resulted in yellow needle crystalline samples of $MnMo(CN)_87H_2O$ (1 $7H_2O$) and $MnW(CN)_87H_2O$ (2 $7H_2O$) after about 2 weeks. The samples were filtered, washed in water and dried in air. X-ray diffraction patterns of as-synthesized products were fully consistent with those simulated from the single-crystal X-ray diffraction data reported previously in the literature [23,24] (Fig. S1, Supplementary information).

Thermal analyses were carried out at a ramp rate of $5\ ^\circ\text{C}\min^{-1}$ under a dry N$_2$ atmosphere using a Pyris Diamond TGA analyzer. Powder X-ray diffraction patterns were collected with CuK$_\alpha$ radiation using a Shimadzu XRD 6000 diffractometer equipped with Anton-Paar HTK 1200 stage for atmosphere and temperature control. Dehydration measurements were run under flowing dry dinitrogen with a heating rate of $1\ ^\circ\text{C}\min^{-1}$. For rehydration measurements, the dinitrogen flow was saturated with water vapor by diverting the nitrogen flow was saturated with water vapor by diverting the gas from the analysis port where it was evacuated for at least a further 4 h before the analysis was started. UHP grade N$_2$ and H$_2$ (99.999%) gases were used for all measurements.

The enthalpy of adsorption (ΔH_{ads}) was obtained by the isosteric method from isotherms recorded at N$_2$ (77 K) and Ar (87 K) baths, and then using the Clausius–Clapeyron equation (1) [25]:

$$
\ln \left(\frac{P_1}{P_2} \right) = \frac{\Delta H_{\text{ads}}}{R} \times \frac{T_2 - T_1}{T_1 \times T_2}
$$

where P_n is the pressure for isotherm n at which a given quantity has been adsorbed, T_n is the temperature for isotherm n, and R is the molar gas constant.

Pressure as a function of the quantity of gas adsorbed was calculated by fitting each isotherm using the Langmuir–Freundlich equation [26]:

$$
\frac{Q}{Q_m} = \frac{B \times P^{1/3}}{1 + B \times P^{1/7}}
$$

where Q is the number of moles of gas adsorbed, Q_m the number of moles of gas adsorbed at saturation, P the pressure, and B and t are the fitting constants. Eq. (2) was then substituted into Eq. (1) to give enthalpy of adsorption as a function of the quantity of H_2 adsorbed.

3. Results and discussion

3.1. Crystal structures of 1 $7H_2O$ and 2 $7H_2O$

The crystal structures of hydrated phases 1 $7H_2O$ and 2 $7H_2O$ are well documented [23,24]. Single-crystal X-ray diffraction revealed that the two compounds are isostructural, and $[M(CN)_8]^{2-}$ units are linked via octahedral Mn^{2+} centers to form a porous 3D framework with 1D channels along the a
axis, in which coordinated and non-coordinated water molecules are trapped (Fig. 1(a)). The robust nature of the framework enables the rectangle pore windows with the size of approximately 5.0 Å × 3.6 Å to be retained in the absence of non-coordinated and coordinated water molecules, leaving available coordinatively-unsaturated Mn²⁺ sites (Fig. 1(b)).

3.2. Dehydration and rehydration studies

Thermogravimetric analysis (Fig. 2) of 1·7H₂O and 2·7H₂O revealed that there were three well-pronounced weight-loss steps as the temperature was increased. The first mass loss at ca. 60 °C and the second mass loss at ca. 120 °C correspond to the loss of three crystallized and four coordinated water molecules per formula unit involved in the pores, leading to the phases 1·4H₂O (or 2·4H₂O) and 1 (or 2), respectively. The third mass loss above high temperatures is attributed to the thermal decomposition of the host framework.

Variable-temperature and synchrotron powder X-ray diffraction results showed that the structure of both materials changed following the loss of crystallized and coordinated water molecules, with the variable change in the diffraction peaks (Fig. 3, Figs. S2 and S3). The changes in X-ray diffraction patterns are not reversed when cooled to 30 °C under nitrogen saturated with water vapor. However, the patterns of samples soaked in water are well in accordance with those of hydrated phases 1·4H₂O (or 2·4H₂O), which indicated that the whole dehydration/rehydration process was reversible with slow resorption kinetics. Meanwhile, above results also mean that three crystallized water molecules are more difficult to re-adsorb into the pores than four coordinated water molecules. In addition, the CN stretch derived from variable-temperature Raman spectra for dehydrated phases are shifted toward higher frequencies from those of the hydrated phases, which can be attributed to the fact that the coordination number of Mn(II) center decreases upon heating (Fig. S4).

Fig. 1 – (a) The ball-and-stick structure of 2·7H₂O, and (b) the space-filling structure of 2. All hydrogen atoms are omitted for clarity.

Fig. 2 – Thermogravimetric curves of (a) 1·7H₂O, and (b) 2·7H₂O.
The water adsorption isotherms of 1 and 2 are shown in Fig. 4, which showed three steps. Three coordinated water molecules per formula unit are readily adsorbed into the pores by \(P/P_0 = 0.01 \) and a further uptake of one coordinated water molecule is observed at \(P/P_0 = 0.2 \), corresponding to the transition of 4-coordinated (unsaturated Mn center) to 6-coordinated Mn. The abrupt uptake behavior at low relative pressures is characteristic of strong \(\text{H}_2\text{O}^{-}\text{Mn}^{3+} \) interaction, since the pores are decorated with coordinatively-unsaturated Mn centers and the water molecule is expected to coordinate to Mn upon its introduction into the pores. However, the origin of the second step, corresponding to the fourth and final coordinated water molecule, is not clear. A third step is observed over the pressure range \(P/P_0 = 0.5 \)–0.7, corresponding to the adsorption of an additional three non-coordinated water molecules. Over this range the kinetics of adsorption are very slow and the equilibrium mass could not be extrapolated after a period of over three hours per point; therefore the corresponding points are omitted from the presented isotherm. Extremely slow kinetics would be associated with very narrow pores, or gradual changes in the crystal structure. Unfortunately, further in-situ structural studies to elucidate the nature of these steps were not possible, as the single crystals fractured during the dehydration process.

Significant hysteresis was observed between the adsorption and desorption arms of the isotherm, suggestive of energy differences associated with framework structural transformation, which is in accordance with temperature-dependence X-ray diffraction and Raman spectra. The desorption arm also contains two steps, consistent with the TGA results.

3.3. Adsorption of nitrogen and hydrogen

The nitrogen adsorption data at 1 bar and 77 K for 1 and 2 reveal the type I isotherms (Fig. 5), with BET surface areas of 146(1) and 112(2) \(\text{m}^2 \text{ g}^{-1} \). The BJH adsorption cumulative volumes of pores for 1 and 2 are 0.027 and 0.020 \(\text{cm}^3 \text{ g}^{-1} \), respectively. At higher pressures a small additional amount is adsorbed, most probably multilayers on the external surface. The surface areas observed for 1 and 2 are significantly lower than those obtained for dehydrated variants of compounds \(\text{A}_2\text{Zn}_3[\text{Fe(CN)}_6]\) (\(\text{A} = \text{H, Li, Na, K, Rb} \) [27] and vacancy-riddled Prussian blue analogs of the type \(\text{M}_3[\text{Co(CN)}_6]_2 \) (\(\text{M} = \text{Mn, Fe, Co, Ni, Cu, Zn} \) [7], owing to the difference in framework structures.

The hydrogen adsorption isotherms of 1 and 2 are shown in Fig. 6. Hydrogen adsorption at 1.1 bar and 77 K was 0.60 wt% for 1 and 0.49 wt% for 2. The trend in hydrogen adsorption correlates well with micropore volumes extracted from nitrogen adsorption data. Assuming only negligible reductions in unit cell volumes as a result of dehydration, this gives minimum volumetric \(\text{H}_2 \) storage densities of 11.36 \(\text{g L}^{-1} \) for 1 and 10.98 \(\text{g L}^{-1} \) for 2 at 1.1 bar and 77 K. Obviously, the gravimetric \(\text{H}_2 \) adsorption and the volumetric densities are apparently lower than those reported for most metal-organic and cyanide-based frameworks under comparable conditions [28]. However, the hydrogen adsorption isotherms of both materials exhibit a steep initial rise, signaling a strong interaction between \(\text{H}_2 \) and the host framework. This enhancement may be due to some interaction of the adsorbed \(\text{H}_2 \) with the 4-coordinated Mn sites. Fits to the isotherms with the
Langmuir–Freundlich equation yielded estimated limiting adsorption capacities of 0.71 wt% for 1, and 0.59 wt% for 2, compared to the highest predicted saturation capacity of 2.3 wt% in Cu₂[Fe(CN)₆] for any measured Prussian blue analogs [29]. High-pressure gas adsorption results showed that both dehydrated phases have about 2.56(1) and 1.78(2) wt% hydrogen uptakes at 10 bar and 77 K (Fig. 7).

The strength of the interaction with the host framework was probed by measuring a second hydrogen adsorption isotherm for each compound at 87 K. Taking both the 77 and 87 K data, a variant of the Clausius–Clapeyron equation was then used to calculate the enthalpy (ΔH_ads) of adsorption as a function of the quantity of hydrogen adsorbed (Fig. 8). At initial loading ΔH_ads has the values of 10.06 kJ mol⁻¹ for 1 and 10.08 kJ mol⁻¹ for 2, which are within the rather broad range seen for previous cases of H₂ binding at bare metal sites, from 6.6 kJ mol⁻¹ for Cu₃[BTC] [30] to 12.3 kJ mol⁻¹ for the recently reported Zn₃(BDC)₃[Cu(Pyen)] [31]. We see that the initial enthalpy observed in this study is higher than that reported for well-known Prussian blue analogs M₃[Co(CN)₆]₂ (M = Mn, Fe, Co, Ni, Cu, Zn) (5.9–7.4 kJ mol⁻¹) [7] and pillar-layered solids M(L)[M'(CN)₆] (M = Co or Ni; L = pillar ligands; M' = Ni, Pd, or Pd) (6.0–7.8 kJ mol⁻¹) [32]. To our knowledge, this represents the highest value reported for any cyanide-based materials. The most energetically favored sites are likely the coordinatively-unsaturated Mn sites left exposed by the removal of coordinated water molecules in the structure.

4. Conclusions

The host–guest interactions and adsorption properties of the isostructural octacyanometallate-based frameworks Mn₂M(CN)₈ (M = Mo, W) have been explored. Both materials exhibit permanent porosity and high enthalpy. Significantly, the presence of exposed Mn²⁺ sites in the structure has played an important role in the enhancement of hydrogen binding interaction. Future work will include the use of neutron diffraction methods in studying the Mn²⁺–H₂ interactions, and vary the type of metal ions to explore systematically the permanent porosities of related octacyanometallate-based frameworks.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (51072072, 51102119, 51272095), Natural Science Foundation of Jiangsu Province of China (BK2011518).

Appendix A. Supplementary information

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ijhydene.2013.10.143.
REFERENCES

