若干有机共轭分子二阶非线性光学系数和结构的关系

袁爱华
（华东船舶工业学院焊接与材料工程系 镇江 212003）
沈小平
（镇江师范专科学校化学系 镇江 212003）
陈文健
（扬州大学师范学院化学系 扬州 225002）

摘要 利用 CNDO/S−CI 程序计算了四类结构近似的有机共轭分子的二阶非线性光学系数，系统地研究了分子结构、共轭链键长、取代基的电子性质、取代位置等对有机共轭大分子二阶非线性光学性质的影响。研究结果表明，四类化合物的二阶非线性光学性质与其分子结构有着密切的关系。

关键词 二阶非线性光学系数, 二苯甲酮, 查耳酮, 二苯基戊二烯酮, 二苯乙烯

非线性光学材料能对激光束进行调频、调幅、调相、调偏，从而是激光技术的重要物质基础。有机倍频材料具有非线性光学系数高、光学响应快、损伤阈值高以及可以进行分子设计等优点[1]，是近年来激光材料领域的热门研究课题之一。一般认为，非线性光学效应是由物质受光波照射后，电子在一定方向上发生移动，产生超极化效应所引起的[2]。有机共轭体系中，分子平面化，π电子趋于离域，往往表现出较大的非线性光学效应。因此，寻找具有较大非线性光学效应的有机共轭体系，是倍频材料研究者的主要课题。人们已经对四类结构近似的有机倍频材料：二苯甲酮类化合物（R’C₆H₄CO₂H₂R’），查耳酮类化合物（R’C₆H₄COCH＝CH₂C₆H₄R’），二苯基戊二烯酮类化合物 [R’C₆H₄CO（CH＝CH）₂C₆H₄R’]，二苯乙烯类化合物（R’C₆H₄CH＝CH₂C₆H₄R’）的二阶非线性光学性质进行了较多的实验研究[3～7]，发现了一些性能优异的倍频材料，如 MMONS[8], BMC[9], ABF[10]等，研究结果表明这四类化合物各有特点：二苯乙烯类化合物倍频系数很高，但光吸收截止波长一般都很长，作为倍频材料在应用上受到很大的限制；二苯甲酮类和查耳酮类化合物分子倍频效应不太强，但光吸收截止波长却较短，一般为白色或淡黄色粉末；二苯基戊二烯酮类化合物是我们发现的性能较为理想的一类有机倍频材料，其优点在于绝大多数该类化合物具有较强的倍频效应，而光吸收截止波长却较短。本文利用引入外场微扰的 CNDO/S−CI 程序，对这四类结构近似的有机化合物分子的微观二阶极化率进行了系统的理论研究，探讨了分子结构、共轭链链长、取代基的电子性质、取代位置等对其二阶非线性光学性质的影响，以期为进一步探索新型优质倍频材料提供理论依据。

1 计算方法和理论模型

※ 女，30岁，硕士，讲师
收稿日期：1998－01－19，修回日期：1998－04－08
受外加电场 E 作用的分子的极化强度 P 可以表示为：

$$ P = \alpha_i E_j + \beta_{jk} E_j E_k + \gamma_{ijkl} E_j E_k E_l $$

式中 i, j, k, l 表示分子的空间坐标，$\alpha_i, \beta_{jk}, \gamma_{ijkl}$ 分别为分子的一阶、二阶、三阶极化率。物质宏观倍频效应的强度主要取决于分子的微观二阶极化率的大小。

我们把外加电场对分子体系产生的作用当成微扰项，根据 Ward[11]用微扰理论的图解方法得到的分子二阶极化率 β_{jk} 的解析公式，并考虑组合相互作用，在 CNDO/S 程序的基础上编制了计算分子二阶极化率的 CNDO/S – CI 程序，为便于与实验值相比较，该程序中把 β_{jk} 转化为矢量形式 β_{vec}，对双中心积分 r_{AB} 的处理利用了 Shimoto – Mataga 近似方法[12]，并对 $\pi - \pi$ 和 $\sigma - \sigma$ 型轨道相互作用引人了不同的成键参数：

$$ \beta_{AB} = (1/2)(\beta_{\sigma\sigma} + \beta_{\pi\pi}) $$

$$ \beta_{\text{vec}} = (1/2) K(\beta_{\sigma\sigma} + \beta_{\pi\pi}) $$

CNDO/S – CI 程序尤其适用于对含苯环的共轭体系的计算，其理论模型和计算结果的可靠性论证详见文献[13]，全部计算在 IBM4381 机上完成。

2 结果与讨论

2.1 共轭链链长对有机共轭体系的二阶极化率的影响

为了便于比较，我们计算了取代基相同、取代位置相同（对位取代）的三组不同类型的二苯环类化合物分子的二阶极化率，结果列于表 1。

| 表 1 化合物 [R¹C₆H₄CO(CH＝CH)nC₆H₄R²] 的 $\beta_{\text{vec}}(10^{-30} \text{cm}^2 \cdot \text{esu}^{-1})$ 值 |
|------------------|---|---|---|---|---|---|---|---|---|
| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| R¹ | H | H | H | H | H | NO₂ | NO₂ | NO₂ |
| R² | H | H | H | OCH₃ | OCH₃ | OCH₃ | NH₂ | NH₂ | NH₂ |
| β_{vec} | 10.019 | 20.502 | 79.609 | 11.332 | 26.708 | 241.248 | 32.845 | 106.974 | 267.156 |

表列 9 个化合物的计算结果说明当取代基 $R¹, R²$ 均相同时，分子的二阶极化率随着 n 的增加而迅速增大，这里我们认为主要有两个方面的原因：一是由于 n 的增加，共轭体系的拉长，分子的二阶极化率迅速增大，因为分子的二阶极化率与共轭体系长度的平方成正比[1]；另一个原因是由于共轭体系的拉长，减小了两个苯环之间的空间位阻，使得分子更趋于平面化，π 电子离域作用增强，分子的二阶极化率也进一步增大。

2.2 取代基的电子性质对化合物 R¹C₆H₄CO(CH＝CH)nC₆H₄R² ($n = 1, 2$) 分子二阶极化率的影响

分子的二阶极化率 β_{vec} 的大小除了与共轭体系的长度有关外，还与取代基的电子性质、取代位置等有关。这里我们固定 $R¹, R²$ 取代基的位置为对位取代，重点讨论 $R¹, R²$ 取代基的电子性质对化合物分子 R¹C₆H₄CO(CH＝CH)nC₆H₄R² β_{vec} 的影响。表 2 列出了十二个分子的 β_{vec} 的计算结果。
表 2 取代基不同卤化合物 R¹C₆H₄CO(CH == CH)ₙC₆H₄R² 的 β_{ac} (10⁻³ cm² esu⁻¹) 值

<table>
<thead>
<tr>
<th>n</th>
<th>R¹</th>
<th>R²</th>
<th>β_{ac}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>OCH₃</td>
<td>26.708</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>H</td>
<td>15.629</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>NO₂</td>
<td>72.125</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>OCH₃</td>
<td>96.489</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>NH₂</td>
<td>89.316</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>NO₂</td>
<td>106.974</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>NH₂</td>
<td>59.229</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>H</td>
<td>148.535</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>NH₂</td>
<td>131.405</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>NO₂</td>
<td>216.027</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>NO₂</td>
<td>267.156</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>NO₂</td>
<td>241.660</td>
</tr>
</tbody>
</table>

表 2 计算结果表明具有 AC₆H₄CO(CH == CH)ₙC₆H₅(17), C₂H₅CO(CH == CH)ₙC₆H₄D(5, 15), AC₆H₄CO(CH == CH)ₙC₆H₄D(8, 9, 12) 三种结构 (其中 A 为吸电子基团, D 为供电子基团) 的分子二阶极化率 β_{ac} 比相应的骨架分子的二阶极化率 β_{ac} 值大, 大得多, 这主要是因为在与羰基相连的苯环上引入吸电子基团或在远离羰基的苯环上引入供电子基团将有利于电子在整个共轭体系内流动而形成 CT 电子转移体系, 故有利于分子 β_{ac} 值的提高。而结构为 DC₆H₄CO (CH == CH)ₙC₆H₅ 的 10, 14 化合物, 由于供电子基团与羰基靠得很近, 降低了整个分子体系的电子离域作用, 故其 β_{ac} 比相应的骨架分子的 β_{ac} 比反而降低了。对于 C₂H₅CO(CH == CH)ₙC₆H₄A(16), DC₆H₄CO(CH == CH)ₙC₆H₄A(11, 13, 18) 两种结构的分子, 虽然分子中有两个吸电子中心, 但由于 NO₂ 的吸电子能力比羰基强, 平整个分子中电子强烈向 NO₂ 偏移也能形成 CT 电子转移体系, 故分子的 β_{ac} 比相应的骨架分子的 β_{ac} 要来得大, 但比相应的 AC₂H₅CO (CH == CH)ₙC₆H₅(17), AC₆H₄CO(CH == CH)ₙC₆H₄D(12, 8, 9) 的 β_{ac} 来得小。

2.3 R¹C₆H₄CO(CH == CH)ₙC₆H₄R²(n = 0, 1, 2) 三类化合物与二苯乙烯类化合物 R¹C₆H₄CH == CHC₆H₄R² 二阶非线性光学性质比较

前面我们重点讨论了共轭链链长、取代基的电子性质对分子 R¹C₆H₄CO (CH == CH)ₙC₆H₄R²(n = 0, 1, 2) 的二阶极化率的影响, 这三类化合物的共同特点是两个苯环之间有一个吸电子基团羰基, 为了进一步探讨有机分子的结构和二阶极化率的关系, 我们又将这三类化合物与没有羰基的二苯乙烯类化合物进行比较, 结果列于表 3。

19, 20 的计算结果表明二苯乙烯类化合物分子的二阶极化率 β_{ac} 值很大, 这是该类化合物倍频效应强的决定性原因, 其中 20 (MOMNS) 的粉末倍频效应为尿素的 1250 倍[8], 是迄今发现的倍频效应最强的有机倍频材料。19, 21, 23 化合物的 β_{ac} 值比较可以看出由于在共轭体系中 部引入了吸电子基团羰基, 降低了共轭体系的 π 电子离域作用, 使得分子的 β_{ac} 值下降了许多, 但羰基的引入有利于吸收光谱蓝移, 是一种降低光吸收截止波长行之有效的方法[3], 这也正是苯甲酰类和查耳酮类化合物光吸收截止波长比较短的重要原因。21, 22 化合物的计算结果表明, 由于羰基是吸电子基团, 根据苯环的亲电取代定位效应, NO₂ 卤位取代比对位取代
对分子二阶极化率 β_{rec} 的贡献更大，24 化合物虽然共轭体系中也存在羰基，但由于共轭体系的拉长，使得分子二阶极化率迅速增加，而与二苯乙烯类化合物分子的二阶极化率 β_{rec} 值相近。这就决定了二苯基链二烯酮类化合物既具有二苯乙烯类化合物的优点，倍频系数较高，又具有二苯甲酮类和查耳酮类化合物的优点，光吸收截止波长比较短，是一类前景看好的新型有机倍频材料，我们正对其它进行进一步的研究。

表 3 四类化合物分子的二阶极化率 $\beta_{\text{rec}}\left(10^{-30}\text{cm}^2\cdot\text{esu}^{-1}\right)$

<table>
<thead>
<tr>
<th></th>
<th>化合物结构式</th>
<th>β_{rec}</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>CH$_3$O-CH=CH-CH=CH-NO$_2$</td>
<td>194.139</td>
</tr>
<tr>
<td>20</td>
<td>CH$_3$O-CH=CH-CH=NO$_2$</td>
<td>222.264</td>
</tr>
<tr>
<td>21</td>
<td>CH$_3$O-CH=CH-CH=NO$_2$</td>
<td>24.833</td>
</tr>
<tr>
<td>22</td>
<td>CH$_3$O-CH=CH-CH-NO$_2$</td>
<td>36.195</td>
</tr>
<tr>
<td>23</td>
<td>CH$_3$O-CH=CH-CH=NO$_2$</td>
<td>96.489</td>
</tr>
<tr>
<td>24</td>
<td>CH$_3$O-CH=CH-CH=CO-CH-NO$_2$</td>
<td>212.826</td>
</tr>
</tbody>
</table>

通过对以上四类化合物的二阶极化率的计算和讨论我们可以得出：
(1) 有机共轭大分子的共轭链越长，分子的二阶极化率越大，宏观样品的倍频效应将越强。
(2) 考取取代基的电子性质、取代位置对分子的二阶极化率的影响，我们认为具有

$$A\xrightarrow{\text{CO}}(\text{CH} \equiv \text{CH})_n\xrightarrow{\text{D}} (n = 0, 1, 2)$$

结构的分子具有较大的二阶极化率 β_{rec}。
(3) 在共轭体系中引入羰基将会降低分子的二阶极化率，但有利于吸收光谱蓝移。

致谢 感谢苏州大学化学化工学院曹阳教授对本工作提供的指导和帮助。
The Structure Dependence of the Second-order Nonlinear Optical Polarizabilities of Some Conjugated Organic Molecules

YUAN Ai-Hua*
(Department of Lefding and Material Engineering, East China Shipbuilding Institute, Zhenjiang, 212003)

SHEN Xiao-Ping
(Department of Chemistry, Zhenjiang Teacher's College, Zhenjiang, 212003)

CHEN Wen-Jian
(Department of Chemistry, Teachers' College, Yangzhou University, Yangzhou, 225002)

Abstract In this paper, we have calculated the second-order nonlinear optical polarizabilities of four kinds of organic conjugated systems by using the CNDO/S–Cl quantum chemical calculation program. The effects of the molecular structure, the molecular length, the electronic properties of substituents and the location of the substitution on the values of β_{sec} of these molecules have been studied. The results reveal that there is a close relationship between the structure and the value of β_{sec}.

Keywords second-order nonlinear optical polarizability, benzophenone, chalcone, cinnamylideneacetophenone, stilbene