# Accepted Manuscript

Metal-organic framework-derived  $\text{Co}_3\text{O}_4$  covered by  $\text{MoS}_2$  nanosheets for high-performance lithium-ion batteries

Jinpei Wang, Hu Zhou, Meizhou Zhu, Aihua Yuan, Xiaoping Shen

PII: S0925-8388(18)30527-9

DOI: 10.1016/j.jallcom.2018.02.086

Reference: JALCOM 44962

To appear in: Journal of Alloys and Compounds

Received Date: 26 October 2017

Revised Date: 26 January 2018

Accepted Date: 8 February 2018

Please cite this article as: J. Wang, H. Zhou, M. Zhu, A. Yuan, X. Shen, Metal-organic frameworkderived Co<sub>3</sub>O<sub>4</sub> covered by MoS<sub>2</sub> nanosheets for high-performance lithium-ion batteries, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.02.086.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.





Metal-organic framework-derived  $Co_3O_4$  covered by  $MoS_2$  nanosheets for high-performance lithium-ion batteries

Jinpei Wang<sup>a</sup>, Hu Zhou<sup>b,\*</sup>, Meizhou Zhu<sup>b</sup>, Aihua Yuan<sup>a,c\*</sup>, Xiaoping Shen<sup>d</sup>

<sup>a</sup>School of Environmental and Chemical Engineering, <sup>b</sup>School of Material Science and Engineering, and <sup>c</sup>Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China <sup>d</sup>School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

\* Corresponding authors. Tel.: +86 511 85639001.

*E-mail address*: aihua.yuan@just.edu.cn (A.H. Yuan); zhmiao119@sina.com (H. Zhou).

Abstract: MOF-derived  $Co_3O_4$  covered by  $MoS_2$  nanosheets was synthesized and applied in the field of lithium-ion batteries. The discharge capacity of  $Co_3O_4/MoS_2$ reached 1200.0 mAh g<sup>-1</sup> after 100 cycles at the current density of 100 mA g<sup>-1</sup>, much higher than those of pure  $Co_3O_4$  and  $MoS_2$ . Moreover, the capacities of  $Co_3O_4/MoS_2$ varied from 903.7 to 397.9 mAh g<sup>-1</sup> upon increasing the current densities from 100 to 800 mA g<sup>-1</sup>. The remarkable performance was attributed to the unique composite structure, in which the inner  $Co_3O_4$  particles can store lithium ions and act as the transportation medium of electrons, enabling outstanding charge/discharge abilities of  $MoS_2$ , while the outer  $MoS_2$  nanosheets can release the bulk volume expansion of metal oxides during the charge/discharge reactions.

**Keywords:** Lithium-ion battery; Molybdenum disulfide; Metal-organic frameworks; Metal oxides; Anode material

## **1. Introduction**

Nowadays, the global energy crisis and requirement for environmental protection are attracting great attention on energy storage and energy conversion systems such as electrochemical energy storage, hydrogen storage, etc [1-4]. Lithium-ion batteries (LIBs) with high capacities have been extensively applied for wearable electronic equipments and electric vehicle for energy storage because of their merits such as no memory effect and environment-benevolent. The electrode materials are the primary components of LIBs. However, the research for new types of electrode materials with greater specific surface areas, higher storage capacities of Li<sup>+</sup> ions, and shorter ion and electron transport paths still remains a huge challenge [5, 6].

With the unique structural features and facile synthesis procedures, metal-organic frameworks (MOFs) have been utilized as templates and/or precursors to obtain porous metal oxides or carbon for the application in energy storage and conversion [7-13]. Considerable work have demonstrated that MOFs can be easily transformed to porous metal oxides through the simple high-temperature calcinations, and the obtained metal oxides preserve the features of MOFs precursors such as large surface areas, suitable voids and tunable architectures [8, 9]. Among these metal oxides applied in anode materials, Co<sub>3</sub>O<sub>4</sub> is expected to meet the requirements for LIBs in the future because of its high theoretical capacity of 890 mAh g<sup>-1</sup> [14, 15]. Unfortunately, similar to other metal oxides, Co<sub>3</sub>O<sub>4</sub> usually suffers from poor capacity retention and/or rate capabilities during the cycling process. It mainly results from the low electrical transportation and dramatic volume variations, as well as the side reactions reacting at the electrode-electrolyte interface [5, 16]. Hence, a growing interest in surface coating has been shown in solving the above disadvantages. To solve the above problem, a large number of Co<sub>3</sub>O<sub>4</sub>-based composites have been dedicated to electrode materials so far, which are decorated by metal oxides, carbonaceous materials or other materials such as Co<sub>3</sub>O<sub>4</sub>/TiO<sub>2</sub>, graphene/Co<sub>3</sub>O<sub>4</sub>, CNT/Co<sub>3</sub>O<sub>4</sub>, [17-21] etc. These

composites not only prevent the aggregation of  $Co_3O_4$ , but also efficiently accommodate the volume variation of  $Co_3O_4$  by providing flexible cushion space. It is still a hard task for business applications, although considerable improved performances have been demonstrated.

Among the various commercial anode materials of LIBs, graphite is widely employed. However, this material possesses a relatively low theoretical capacity (372 mAh g<sup>-1</sup>). So it is unable to meet the requirement for massive batteries of high-energy density. Compared with conditional graphite, transition-metal sulfides (MoS<sub>2</sub>, WS<sub>2</sub>, ReS<sub>2</sub>) have exhibited higher capacities than the intercalation-based graphite anodes. In addition, similar to graphite, MoS<sub>2</sub> has a two dimensional (2D) layered structure. The spacing of adjacent layers is connected by the weak Vander Waals, which will promote the ions insertion and extraction process during the charge/discharge cycling [22-24]. And yet, MoS<sub>2</sub> has a poor cycling performance because of the substantial volumetric change. Meanwhile, a rapid capacity decline at high charge/discharge current density results from semiconducting property of MoS2 [25-31]. Therefore, MoS2 with different morphologies via structure modification have been reported for energy usage [25, 26]. In addition, high-performance  $MoS_2$ -based composites have also been constructed for energy application with a handy and commercial method. Su et al. synthesized nano-TiO<sub>2</sub>-decorated MoS<sub>2</sub> nanosheets for LIBs which delivered a high capacity [29]. Chen et al. constructed a nanocomposite MoS<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> with an excellent electrochemical performance [30]. In the meantime, MoS2 nanosheets-covered structures have been prepared for energy storage, catalysis and other applications [32-34]. In fact, it should be noted that very little optimization work has been done on the composites of MOFs and  $MoS_2$  for practical applications (Table S1). Zheng et al. prepared the MNCD@MoS<sub>2</sub> composite (MNCD: microporous nitrogen-doped carbon dodecahedron) by employing ZIF-8 as precursor, and the electrode exhibited ultrafast and stable charge/discharge abilities for LIBs [35].

The current work show that the composites from  $MoS_2$  and  $Co_3O_4$  display excellent performances for energy storage. Based on these studies, our work

extends the knowledge to a facile method to prepare MOF-derived Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> composite, as shown in Scheme 1. The Co-based MOF, ZIF-67, was firstly prepared and then the as-prepared ZIF-67 particles were thermally treated to obtain high-symmetric  $Co_3O_4$  dodecahedrons. Finally, the  $Co_3O_4/MoS_2$ composite was constructed by a hydrothermal synthesis process. The lithium storage performance of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> was discussed in detail. The results show that the composite electrode displays a high rechargeable capacity of ~1200 mAh g<sup>-1</sup> after 100 cycles at a current rate of 100 mA g<sup>-1</sup>, and exhibits an improved cycling stability than pure  $Co_3O_4$  and  $MoS_2$ . The excellent electrochemical performances result from the designed unique structure composing of inner Co<sub>3</sub>O<sub>4</sub> particles and outer MoS<sub>2</sub> nanosheets, which maximally take advantages of electrochemical activities of both components. Moreover, the outer  $MoS_2$  nanosheets can effectively accommodate large volumetric expansion of inner Co<sub>3</sub>O<sub>4</sub> particles. In addition, the Co<sub>3</sub>O<sub>4</sub> component provides a fast path for electron transportation. As far as we know, there are only two samples of MOF-derived metal oxide/MoS2 composites. Zang et al. synthesized crystalline MoS<sub>2</sub>@TiO<sub>2</sub> to promote catalytic activity for hydrogen evolution reaction (HER) [36]. Yin et al. demonstrated a facile two-step hydrothermal method to synthesize MoS<sub>2</sub> coupled MOF-derived TiO<sub>2</sub> for photoelectrochemical water splitting and dye sensitized solar cells [37]. Our work is the first example of MOF-derived metal oxide composited with MoS<sub>2</sub> for the application in energy storage.



Scheme 1 Formation process of the Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> composite.

#### 2. Experimental details

#### 2.1. Chemical reagents

Cobalt nitrate hexahydrate (Co(NO<sub>3</sub>)<sub>2</sub>· $6H_2O$ ), 2-methylimidazole, thiourea and ammonium molybdate tetrahydrate ((NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>· $4H_2O$ ) were supplied from Energy Chemical. All chemicals were used without further purification.

#### 2.2. Synthesis of ZIF-67

ZIF-67 was prepared according to the reported method [38, 39]. 1.455 g  $Co(NO_3)_2 \cdot 6H_2O$  was dissolved in a methanolic solution (MeOH) to form solution **A**, while 1.642 g 2-methylimidazole was dissolved in another 40 mL MeOH to give solution **B**. After that, solution **A** was slowly dripped into solution **B** and then magnetically stirred vigorously for 30 seconds. The mixed solution was aged under room temperature without any intervention for 24 h. The purple ZIF-67 precipitates were separated from the solution by centrifugation, following by washing thoroughly many times with methanol and absolute ethanol. The products were finally dried at 60 °C for 12 h under vacuum condition.

# 2.3. Synthesis of $Co_3O_4$

 $Co_3O_4$  was prepared through the calcination of ZIF-67 precursor. In brief, the products of ZIF-67 were placed in a furnace. Then the temperature was heated to 350 °C at a rate of 1 °C min<sup>-1</sup> and kept at this temperature for 30 min in nitrogen atmosphere. After that, the nitrogen gas was turned off and the stove was kept at the temperature constantly under air gas flow for further 60 min. After cooling to room temperature naturally, the resultant black  $Co_3O_4$  particles were obtained.

## 2.4. Synthesis of $Co_3O_4/MoS_2$

 $Co_3O_4/MoS_2$  was synthesized by a one-step hydrothermal reaction, using ammonium molybdate tetrahydrate, thiourea and as-prepared  $Co_3O_4$  as starting materials. 80 mg  $Co_3O_4$  products were added into 40 mL deonized water by ultrasound for 30 min. Then, 0.35 g (0.28 mmol) ammonium molybdate tetrahydrate and 0.76 g (10 mmol) thiourea were dissolved into the solution.

After ultrasonic treatment, the solution became homogeneous. Being stirred for 1 h, the composite was synthesized by hydrothermal treatment of the precursor solution in a dried Teflon-lined stainless steel autoclave with 60% of the total volume. And then, the autoclave was treated at 200 °C for 15 h. Once being cooled down naturally, the resulting  $Co_3O_4/MoS_2$  precipitates were collected by centrifugation, washed with de-ionized water and ethanol for several times. And then, the collected precipitates were dried at 60 °C in vacuum overnight. For comparison, two  $Co_3O_4/MoS_2$  composites with different mass ratios of  $MoS_2:Co_3O_4$  were prepared by varying the mass (20 mg, 130 mg) of  $Co_3O_4$  components during the synthesis process of composites. The as-obtained materials were named as L- $Co_3O_4/MoS_2$  and H- $Co_3O_4/MoS_2$ , respectively. Furthermore, pure  $MoS_2$  was also prepared as above method in the absence of  $Co_3O_4$ .

## 2.5. Characterization

X-ray powder diffraction (XRD) patterns were recorded on a Shimadzu XRD-6000 X-ray diffractometer with Cu  $K_{\alpha}$  ( $\lambda = 0.15406$ ) to evaluate the crystal structure of the as-synthesized samples. X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB 250) using Al- $K_{\alpha}$  radiation with a base pressure of  $5 \times 10^{-10}$ mbar was employed to analyze the surface species and nature of elements present in the heterostructure. The morphology and structural characterization of the samples were carried out by transmission electron microscopy (TEM, JOEL JEM2100F), scanning electron microscopy (FE-SEM, ZEISS Merlin Compact). Energy dispersive spectroscopic (EDS) were characterized by Oxford X-Max.

## 2.6. Electrochemical measurements

The electrochemical measurements of as-prepared materials were done using standard 2032-type coin cells. The CR2032 type lithium coin cells were assembled inside a glove box (LABSTAR-M Braun) filled with ultra-high pure argon maintained ( $O_2$  and  $H_2O$  levels < 0.5 ppm). Celgard 2600 was used as the separator and metallic lithium foil was applied as the counter and reference electrode. The electrolyte was 1 M LiPF<sub>6</sub> with the mixed solution of ethylene carbonate and diethyl carbonate (1:1 by

volume). The working electrode materials were prepared with 75 wt% of active materials ( $Co_3O_4$ ,  $MoS_2$  or  $Co_3O_4/MoS_2$ ), 15 wt% of Super P block carbon and 10 wt% of binder polyvinylidene fiuoride (PVDF) in N-methyl-2-pyrrolidone (NMP) solution to form homogeneous slurries. Subsequently, the well-mixed slurry was uniformly tape-casted onto copper foil and dried to remove the solvent at 80 °C for 12 h under a vacuum condition. Galvanostatic charge-discharge measurements and rate-performance tests under different current densities were carried out in a LAND CT 2001A (Wuhan Rambo Testing Equipment Co. Ltd) between 0.01 and 3.0 V. Cyclic voltammetry (CV) behaviors and electrochemical impedance spectroscopy (EIS) performances of all samples were studied with a CHI660D electrochemical work station (Chenhua, Shanghai, China) using a standard three-electrode setup. The CV curves were conducted in the voltage range of 0.01-3 V vs. Li/Li<sup>+</sup> with a scan rate of 0.2 mV s<sup>-1</sup>. EIS tests were performed over the frequency range from 0.01 Hz to 100 kHz by applying a sine wave with amplitude of 5 mV at room temperatures.

# 3. Results and discussion

## 3.1. Powder X-ray diffraction

All X-ray diffraction peaks of as-prepared Co<sub>3</sub>O<sub>4</sub> and MoS<sub>2</sub> can be indexed well with the Co<sub>3</sub>O<sub>4</sub> (JCPDS card no. 42-1467) and hexagonal MoS<sub>2</sub> (JCPDS card no. 37-1492), respectively (Fig. S1). The diffraction peak at 14.2° in XRD patterns of the composite (Fig. 1) corresponds to the (002) plane of the hexagonal 2H-MoS<sub>2</sub>, which accounts to the typical interlayer distance of 0.63 nm in the following high resolution (HR) TEM image. This peak reveals a well-stacked layered structure of MoS<sub>2</sub>. The (002) plane for pure MoS<sub>2</sub> (Fig. S1) moves slightly toward small angle because of the formation of chaotic layers, which results in lattice defects or strain generation. The diffraction peaks at  $2\theta = 32.6^{\circ}$  can be assigned to (100) plane, and  $2\theta = 58.2^{\circ}$  can be indexed to (110) plane of 2H-MoS<sub>2</sub>, respectively [40, 41]. Both peaks could be obviously observed in XRD patterns of the composite (Fig. 1).



**Fig. 1** Powder XRD patterns of  $MoS_2$ ,  $Co_3O_4$ , and  $Co_3O_4/MoS_2$  ( $\Box$  and  $\Delta$ symbols represent characteristic diffraction peaks of  $MoS_2$  and  $Co_3O_4$ , respectively) *3.2. X-ray photoelectron spectroscopy* 

The XPS survey spectrum of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> (Fig. S2) manifested the presence of molybdenum, sulfur, cobalt, and oxygen elements. As for the Co component, the Co 2p spectrum is shown in Fig. 2a, which displays a doublet at binding energies of about 779.3 and 794.4 eV, corresponding to Co  $2p_{3/2}$  and Co  $2p_{1/2}$  spin orbit coupling levels, respectively [16, 42]. Fig. 2b shows the O 1s binding energies. The peak at 530.1 eV in the XPS spectrum of O 1s core level for Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> can be assigned to the surface lattice O<sup>2-</sup> of metal oxides. Besides, the peak at 531.6 eV corresponds to the adsorbed oxygen and hydroxyl group [42]. This result confirms that  $Co_3O_4$  is the main cobalt phase in the composite. The composite is proved to undoubtedly contain 2H-phase  $MoS_2$  with the Mo  $3d_{5/2}$ , Mo  $3d_{3/2}$ , S  $2p_{3/2}$ , and S  $2p_{1/2}$  orbital spins. Figure 2c shows the high-resolution XPS spectrum of Mo 3d core levels for the composite. Two peaks at 228.9 and 232.1 eV correspond to the binding energies of Mo  $3d_{5/2}$  and Mo  $3d_{3/2}$ , respectively. These two peaks are characteristic values for  $\mathrm{Mo}^{4+}$  in  $\mathrm{MoS}_2$  and very close to those reported in literatures [35, 41]. Moreover, a small and slightly lower binding energy (~226 eV) than that for Mo  $3d_{5/2}$  can be observed, which is the specific value for S 2s. In XPS spectrum of S 2p (Fig. 2d), two peaks at 162.1 and 163.2 eV can be consistent with S  $2p_{3/2}$  and S  $2p_{1/2}$ , respectively, indicating the existence of  $S^{2-}$  [35, 41]. The survey and narrow scans demonstrate that  $Co_3O_4/MoS_2$ is free of other impurities and the Mo and S elements are present as the MoS<sub>2</sub> phase.



**Fig. 2** XPS spectra of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub>: (a) Co 2p, (b) O 1s, (c) Mo 3d, and (d) S 2p. *3.3. Morphologies* 

The morphologies and structures of as-prepared ZIF-67,  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  were examined by SEM and TEM, as shown in Fig. 3. The SEM image (Fig. 3a) reveals that these rhombic dodecahedrons have smooth surfaces and sharp edges. Fig. 3b shows that the  $Co_3O_4$  products preserve the features of MOF precursors with the uniform size and rhombic dodecahedral morphology. It has to be mentioned that the surface of  $Co_3O_4$  is rougher than ZIF-67. Actually, the organic linker in the structure of MOF can efficiently prevent the aggregation of the resulting nanometer particles in the primary MOF, generating numerous voids in the final metal oixdes with rough surface. SEM image of  $Co_3O_4$  reveals that the particles have uniform dodecahedrons with the average size of about 600 nm. The pure  $MoS_2$  has a structure of aggregated flower-like microspheres, which are made up from interconnected nanosheets with the nanometer-scale thinness (Fig. 3c). In comparison, the  $Co_3O_4/MoS_2$  composite was prepared through the hydrothermal synthetic growth of  $MoS_2$  on  $Co_3O_4$  particles (Fig. 3d). In more detail, the enlarged SEM image indicates that  $MoS_2$  nanosheets are grown on the rough surface of  $Co_3O_4$  after the hydrothermal

reaction. The internal structure of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> is further investigated by employing TEM. As can be seen from Fig. 3e, the surfaces of  $Co_3O_4$  particles are covered by numerous MoS<sub>2</sub> nanosheets, in sharp contrast to the surface of pure Co<sub>3</sub>O<sub>4</sub>. A clear structure of the  $Co_3O_4/MoS_2$  composite which  $MoS_2$  nanosheets are grown on  $Co_3O_4$ dodecahedrons can be seen from Fig. 3f. The successful preparation of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> validates that the Co<sub>3</sub>O<sub>4</sub> dodecahedron can serve as a good template for the deposition of MoS<sub>2</sub>. The growth mechanism of the composites can be described as follows. MoS<sub>2</sub> nanosheets are produced through a hydrothermal reaction between ammonium molybdate tetrahydrate and thiourea, and simultaneously uniformly dispersed on the surface of Co<sub>3</sub>O<sub>4</sub> particles derived from ZIF-67 [43]. EDS mapping analysis (Fig. 3g) reveals that the successful decoration of  $Co_3O_4$  particles with  $MoS_2$  nanosheets, due to the uniform distribution of four elements (Co, Mo, O and S) in the whole area. HRTEM image of Fig. 3h shows clear fringes with an interlayer distance of ca. 0.63 nm for the (002) basal planes of the hexagonal  $MoS_2$  structure. The fringes with a lattice spacing of 0.23 nm and 0.46 nm can be indexed to the (222) and (111) planes of the dodecahedron Co<sub>3</sub>O<sub>4</sub>, respectively [30, 39]. Furthermore, the selected area electron diffraction (SAED) pattern is shown in the inset picture of Fig. 3h. The diffraction rings correspond well with the (002), (100) planes of  $MoS_2$ , (111), (400) and (222) planes of Co<sub>3</sub>O<sub>4</sub>, respectively.



**Fig. 3** SEM images of (a) ZIF-67, (b)  $Co_3O_4$ , (c)  $MoS_2$ , and (d)  $Co_3O_4/MoS_2$  (inset: the image of  $Co_3O_4/MoS_2$  at a high magnification). (e, f) TEM images of  $Co_3O_4/MoS_2$  at different magnifications; (g) The EDS elemental mapping of S, Mo, Co and O; (h) HRTEM image of  $Co_3O_4/MoS_2$  (inset: the corresponding SAED pattern).

# 3.4. Electrochemical performances

The Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> composite has been used as an anode material for LIBs. Fig. 4a displays the first three CV cycles measured at a scan rate of 0.2 mV s<sup>-1</sup> in the voltage range from 0.01 to 3.0 V. In the first cycle, the peak centered at 0.63 V can be resulted from the reduction of Co<sup>2+</sup> (and Co<sup>3+</sup>) to Co and the associated electrolyte decomposition accompanying with the formation of Li<sub>2</sub>O [16, 38]. Meanwhile, a broad peak at 2.03 V in the charge process should be attributed to the decomposition of Li<sub>2</sub>O and the oxidation of metallic Co into Co<sub>3</sub>O<sub>4</sub> [30, 38]. These peaks are not found in the first three CV curves of bare MoS<sub>2</sub> (Fig. S3a). In the first discharge sweep, the peak exhibited at 1.11 V

could be ascribed to the intercalation of lithium ions into the hexagonal  $MoS_2$ lattice accompanied by the phase transformation to octahedral Li<sub>x</sub>MoS<sub>2</sub>, according to the conversion reaction:  $MoS_2 + xLi^+ + xe^{-1} \rightarrow Li_xMoS_2$  [40, 41]. Then, the broad and weak peak at 0.29 V is due to the decomposition of Li<sub>x</sub>MoS<sub>2</sub> into Mo nanocrystals, which are embedded in a Li<sub>2</sub>S matrix on the basis of the electrochemical reaction:  $LixMoS_2 + (4 - x)Li^+ + (4 - x)e^{-1} \rightarrow Mo +$ 2Li<sub>2</sub>S [45-48], and followed by the formation of a solid electrolyte interface (SEI) layer. After the first cycle, the reversible transformation reaction of sulfur to Li<sub>2</sub>S, which is the main mechanism for lithium storage of MoS<sub>2</sub>. Accordingly, the reduction peak at 2.32 V in the following cycles is account for the lithiation process of S to form  $\text{Li}_2\text{S}$ : S + 2Li<sup>+</sup> + 2e<sup>-1</sup>  $\rightarrow$  Li<sub>2</sub>S [50, 51]. In the subsequent cycles, the oxidation-reduction peak become more stable, indicating that reversible electrochemical reactions of  $Co_3O_4/MoS_2$  composite electrode are gradually created after the first cycle. However, the Co<sub>3</sub>O<sub>4</sub> electrode (Fig. S3b) exhibits a decrease in the peak intensity from the  $2^{nd}$  cycle because of the incomplete de-conversion, serious agglomeration and huge structural reconstruction of metal oxides during cycling [42, 44, 49]. Fig. 4b depicts the charge/discharge voltage profiles of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> anode for the 1<sup>st</sup>, 2<sup>nd</sup>, and 100<sup>th</sup> cycles at a current density of 100 mA g<sup>-1</sup> between 0.01 and 3.0 V. The composite electrode shows a high initial discharge capacity of 1136.4 mAh g<sup>-1</sup>, a relative low charge capacity of 912.4 mAh g<sup>-1</sup>, and the Coulombic efficiency (CE) of around 80.3%. The decomposition of electrolyte or some irreversible processes such as the formation of a solid-electrolyte interface layer during the first cycle can be the main reason for the low initial CE mainly [52]. Moreover, such a highly initial lithium storage capacity is likely to be in connection with the synergistic effect of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub>. From the 14<sup>th</sup> cycle, the electrochemical lithiation/delithiation process becomes very stable and the discharge capacity starts to increase to over 1000 mAh g<sup>-1</sup>. The Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> composite electrode can still remain a high capacity above 1000 mAh  $g^{-1}$  after 50 cycles (Fig. 4c), and reach to their maximum discharge capacity of  $\sim 1200$  mAh g<sup>-1</sup> after the first

100 cycles. However, pure  $Co_3O_4$  and  $MoS_2$  display the rapid and huge capacity decay during cycling (Fig. S4). Then, Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> exhibits a coulombic efficiency of approximately over 97% from the 4<sup>th</sup> cycle. These results demonstrate that the significantly improved electrochemical performance of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> electrode can be reasonably ascribed to the unique structure of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub>. On one hand, the inner Co<sub>3</sub>O<sub>4</sub> particles stabilize the disordered structure of MoS<sub>2</sub>, and suppress the volume expansion and shrinkage during the charge/discharge process, as well as avoid the loss of polysulfide intermediates. On the other hand, MoS<sub>2</sub> nanosheets covered on the surface of Co<sub>3</sub>O<sub>4</sub> particles slow down the bulk change of Co<sub>3</sub>O<sub>4</sub> during cycling [33-35]. For comparison, two Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> samples with different mass ratios of MoS<sub>2</sub>:Co<sub>3</sub>O<sub>4</sub> are prepared by changing the mass (20 mg, 130 mg) of Co<sub>3</sub>O<sub>4</sub> components during the synthesis process of composites. The as-obtained materials are named as L-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> and H-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub>, respectively. The morphologies and charge/discharge curves of both composites are shown in Fig. S5. Obviously, the specific capacities of these two composites decrease sharply with increasing the cycling numbers, which can be reasonably explained from their morphological features. For the H-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> sample, it can be found that some Co<sub>3</sub>O<sub>4</sub> particles have not been covered by irregular MoS<sub>2</sub> nanosheets with various sizes. As a result, these exposed Co<sub>3</sub>O<sub>4</sub> particles easily suffer from the pulverization during the charge/discharge reaction and then result in the fast decay of specific capacities for the composite electrode. For the L-Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> sample, more sphere-like aggregated MoS<sub>2</sub> particles are formed, which offer much less active sites and also suffer from volume expansion during the cycling reaction, leading to the poor cycling stability for the composite electrode. So, we can conclude from above analysis that the moderate mass ratio of the composite will facilitate the enhancement of  $Co_3O_4:MoS_2$  in electrochemical stabilities. The cycling performance of  $Co_3O_4/MoS_2$  at 1 A g<sup>-1</sup> is also carried out and shown in Fig. S6. The electrode still delivers a capacity of 275



mAh  $g^{-1}$  after 30 cycles and no obvious decay is observed, demonstrating a high specific capacity and cycling stability for such system even at higher current densities.

**Fig. 4** (a) Cyclic voltammetry curves of  $Co_3O_4/MoS_2$  measured at a scan rate of 0.2 mV s<sup>-1</sup> in the voltage range of 0.01-3 V (vs. Li/Li<sup>+</sup>); (b) Charge-discharge curves of  $Co_3O_4/MoS_2$  at the current density of 100 mA g<sup>-1</sup>; (c) Cycling performances for  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  at the current density of 100 mA g<sup>-1</sup>; (d) Rate behavior of  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  at various current densities from 100 to 800 mA g<sup>-1</sup>; (e) Electrochemical mechanism of  $Co_3O_4/MoS_2$  consisting of electron transportation and ions diffusion; (f) Nyquist plots of  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  electrodes from

100 kHz to 0.01 Hz before and after 100 cycles at the current density of 100 mA  $g^{\text{-1}}$  .

The rate capabilities of  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  electrodes at various current densities are further investigated. Fig. 4d shows multiple-current galvanostatic measurements of  $Co_3O_4/MoS_2$ . Increasing the current densities gradually from 100 to 200, 500, and 800 mA g<sup>-1</sup>, the capacities are 903.7, 833.1, 793.8, and 397.9 mAh g<sup>-1</sup>, respectively. The capacities of the composite decrease slowly with increasing the current densities, manifesting a considerably better rate performance than pure  $Co_3O_4$ . In addition, upon the reversal of the current density from 800 to 100 mA g<sup>-1</sup>, the specific capacity of the composite electrode is around 970 mAh g<sup>-1</sup>.

This aforesaid result reveals that the good rate capability of the composite derived from the synergistic interaction between dodecahedra Co<sub>3</sub>O<sub>4</sub> particles and  $MoS_2$  nanosheets. At the same time, the curve of cycling performance presents that the capacities of the composite electrode increase gradually rather than decline during the first 100 cycles. It should be mentioned here that our composite has obvious advantages compared with other MoS<sub>2</sub> or Co<sub>3</sub>O<sub>4</sub>-based composite electrodes in the aspect of specific capacity (Table 1). mechanism of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> consisting Electrochemical of electron transportation and ions diffusion is shown in Fig. 4e [35]. Overall, the gradual permeation of electrolyte into the inner Co<sub>3</sub>O<sub>4</sub> particles along with the activation of the outer MoS<sub>2</sub> nanosheets result in the increased reversible capacity during the first 100 cycles. Viewed from the structural perspective, the pores of Co<sub>3</sub>O<sub>4</sub>/MoS<sub>2</sub> mainly derive from porous Co<sub>3</sub>O<sub>4</sub> dodecahedrons with tiny nanocrystallites and numerous MoS<sub>2</sub> nanosheets. This hierarchical porous structure not only enlarges the contact area of Co<sub>3</sub>O<sub>4</sub>/electrolyte, but also provides more spaces and electrochemically active surfaces for accommodating lithium ions. In addition, the outer MoS<sub>2</sub> nanosheets in the composite can offer more active sites for the insertion/extraction of lithium ions. Another fact is that the gradual formation of polymer/gel-like layer on the surface of electrode also facilitates the increasing of capacities [38]. However, the capacity begins to

decrease after 100 cycles, which may be attributed to the following facts. The redox reaction is usually accompanied by consuming part of the electrolyte during the charge/discharge process. Owing to the lack of electrolyte after cycling, the electrode can not be completely moist to the electrolyte. To further explore the reason of capacity decay, the morphologies of  $Co_3O_4/MoS_2$  after cycling are performed and the SEM images are shown in Fig. S7. The pulverization of a small amount of particles is observed, although most of particles still maintain the integrity of structure and morphology. The combination of above factors results in the decrease of capacity after 100 cycles.

**Table 1** Summary of capacitive performances of  $MoS_2$  or  $Co_3O_4$ -basedcomposite electrodes reported previously for LIBs

| Materials                                        | Specific Capacity | Current       | Cycle number | Refs.     |
|--------------------------------------------------|-------------------|---------------|--------------|-----------|
|                                                  | $(mAh g^{-1})$    | $(mA g^{-1})$ | (cycles)     |           |
| TiO <sub>2</sub> -MoS <sub>2</sub>               | 604               | 100           | 100          | 29        |
| $MoO_2/MoS_2$                                    | 724               | 800           | 800          | 31        |
| $MoS_2/Co_3O_4$                                  | 920               | 200           | 100          | 30        |
| $MNCD@MoS_2$                                     | ~1230             | 100           | 120          | 35        |
| $TiO_2@MoS_2$                                    | 971               | 100           | 200          | 40        |
| $Fe_2O_3/MoS_2$                                  | 1350              | 100           | 150          | 41        |
| Fe <sub>3</sub> O <sub>4</sub> /MoS <sub>2</sub> | ~700              | 2000          | 510          | 51        |
| graphene/Co <sub>3</sub> O <sub>4</sub>          | 714               | 100           | 200          | 20        |
| Co <sub>3</sub> O <sub>4</sub> (MOF-71)          | 913               | 200           | 60           | 52        |
| Co <sub>3</sub> O <sub>4</sub> /CNT              | 880               | 50            | 100          | 21        |
| Co <sub>3</sub> O <sub>4</sub> /TiO <sub>2</sub> | 642               | 500           | 200          | 19        |
| $Co_3O_4/MoS_2$                                  | 1246              | 100           | 100          | this work |

Electrochemical impedance spectrometry (EIS) measurements were carried out before and after 100 cycles for the sake of further understanding the electrochemical performance of  $Co_3O_4$ ,  $MoS_2$  and  $Co_3O_4/MoS_2$  electrodes. Nyquist plots (Fig. 4f)

show that the  $Co_3O_4/MoS_2$  has the greatly smaller charge transfer resistance (Rct) than that of pure  $Co_3O_4$  and  $MoS_2$  before cycling between 100 kHz to 0.01 Hz. The impedance of  $Co_3O_4/MoS_2$  and  $Co_3O_4$ ,  $MoS_2$  electrodes decreases significantly after the  $100^{\text{th}}$  cycle, compared with the fresh cell. For the pure  $MoS_2$  and  $Co_3O_4$ , the smaller charge transfer resistances after 100 cycles can be attributed to the more close contacts between particles and conductive agents after the pulverization occurred in the charge/discharge process. This result further confirms that the incorporation of  $MoS_2$  nanosheets can greatly accelerate electron transmission during the lithiation/delithiation conversion, leading to the improved electrochemical performances [53, 54].

## 4. Conclusions

In summary,  $Co_3O_4$  dodecahedrons with uniform morphology have been prepared through a direct pyrolysis of ZIF-67 and used as the substrates for the growth of MoS<sub>2</sub> nanosheets, resulting in the formation of  $Co_3O_4/MoS_2$ , where  $Co_3O_4$  particles are uniformly covered by MoS<sub>2</sub> nanosheets. The resulting  $Co_3O_4/MoS_2$  is applied as an anode material for LIBs. The ratio of  $Co_3O_4$  and  $MoS_2$  components in the composite is important for the enhancement of electrochemical performance. In the structure, the two-dimensional MoS<sub>2</sub> can not only provide a high specific capacity, but also prevent the particles aggregation and slow capacity attenuation. In addition, MoS<sub>2</sub> also releases the bulk volumetric change of  $Co_3O_4$  during the charge and discharge process. In consequence, the composite delivers a high reversible capacity and cycling stability. It is believed that this facile synthetic strategy can be extend to other metal oxides/MoS<sub>2</sub> composites, and this type of materials can also be promising materials for other electrochemical applications such as supercapacitors, Na-ion storage and electrocatalysis.

# **Appendix A. Supporting information**

Supplementary data associated with this article can be found in the online at <a href="http://dx.doi.org/...">http://dx.doi.org/...</a>

# Acknowledgements

This work was supported by the National Natural Science Foundation (51672114, 51272095), the Natural Science Foundation of Jiangsu Province

(Nos. BK20151328, BK20161357), the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

#### References

[1] P. Simon, Y. Gogotsi, B. Dunn. Science 343 (2014) 1210-1211.

- [2] H.J. Huang, J.X. Zhu, W.Y. Zhang, C.S. Tiwary, J.F. Zhang, X. Zhang, Q.G. Jiang, H.Y. He, Y.P. Wu, W. Huang, P.M. Ajayan, Q.Y. Yan. Chem. Mater 28 (2016) 1737-1745.
- [3] D. Ji, H. Zhou, J. Zhang, Y.Y. Dan, H.X. Yang, A.H. Yuan. J. Mater. Chem. A 4 (2016) 8283-8290.
- [4] H. Zhou, X.Q. Liu, J. Zhang, Y.J. Liu, A.H. Yuan. Int. J. Hydrogen Energy 39 (2014) 2160-2167.
- [5] M.V. Reddy, G.V. Subba Rao, B.V. Chowdari. Chem. Rev. 113 (2013) 5364-5457.
- [6] P.G. Bruce, B. Scrosati, J.-M. Tarascon. Angew. Chem., Int. Ed. 47 (2008) 2930-2946.
- [7] Z.Q. Xie, W.W. Xu, X.D. Cui, Y. Wang. ChemSusChem. 10 (2017) 1645-1663.
- [8] L. Wang, Y.Z. Han, X. Feng, J.W. Zhou, P.F. Qi, B. Wang. Coord. Chem. Rev. 307 (2016) 361-381.
- [9] R.T. Wang, D.D. Jin, Y.B. Zhang, S.J. Wang, J.W. Lang, X.B. Yan, L. Zhan. J. Mater. Chem. A 5 (2017) 292-302.
- [10] J. H. Zhang, M. Huang, B. J. Xi, K. Mi, A. H. Yuan, S. L. Xiong. Adv. Energy Mater. 8 (2018) 201701330.
- [11] M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H.Yuan, Q.H. Kong, S.L. Xiong. J. Mater. Chem. A 5 (2017) 266-274.
- [12] Y. Wang, X.M. Guo, Z.K. Wang, Y. Wang, M.F. Lv, C. Yan, A.H. Yuan,H.X. Yang, J. Mater. Chem. A 5 (2017) 25562-25573.
- [13] Y.Y. Chen, R. Cai, Y. Yang, C. Liu, A.H. Yuan, H.X. Yang, X.P. Shen, J. Alloys Compd. 698 (2017) 469-475.

- [14] J.X. Guo, B. Jiang, X. Zhang, L. Tang, Y.H. Wen. J. Mater. Chem. A 3 (2015) 2251-2257.
- [15] K.C. Klavetter, S. Garcia, N. Dahal, J. Snider, J. Pedrosouza, T. H. Cell, M.A. Cassara, A. Heller, S.M. Humphrey, C. B. Mullins. J. Mater. Chem. A 2 (2014) 14209-14221.
- [16] L.M. Zhang, B. Yan, J.H. Zhang, Y.J. Liu, A.H. Yuan, G. Yang. Ceram. Int. 42 (2016), 5160-5170.
- [17] T. Qi, S.C. Zhang, X.M. Wu, Y.L. Xing, G.R. Liu, Y.B. Ren. New J. Chem. 40 (2016) 3536-3542.
- [18] Y.B. Lou, J. Liang, Y.L. Peng, J.X. Chen. Phys. Chem. Chem. Phys. 17 (2015), 8885-8893.
- [19] W.W. Xu, X.D. Cui, Z.Q. Xie, G. Dietrich, Y. Wang. Electrochim. Acta. 222 (2016) 1021-1028.
- [20] Q.T. Qu, T. Gao, H.Y. Zheng, X.X. Li, H.M. Liu, M. Shen, J. Shao, H.H. Zheng. Carbon, 92 (2015) 119-125.
- [21] N.L. Venugopal, J. Yoo, W.S. Yoon. J. Nanosci. Nanotechno 17 (2017) 3390-3396.
- [22] T. Stephenson, Z. Li, B. Olsen, D. Mitlin. Energy Environ. Sci. 7 (2014) 209-231.
- [23] H.N. Li, Y.M. Shi, M.-H. Chiu, L.J. Li. Nano Energy 18 (2015) 293-305.
- [24] X.D. Zhu, K.X. Wang, D.J. Yan, S.R. Le, R.J. Ma, K.N. Sun, Y.T. Liu. Chem. Commun. 51 (2015) 11888-11891.
- [25] L.M. Xu, L. Ma, X.Y. Xu, X.P. Zhou, L.L. Zhang, W.X. Chen. Materials Letters, 173 (2016) 84-87.
- [26] H.J. Kim, J.P. Cho. Nano Lett. 11 (2011) 4826-4830.
- [27] C.Q. Feng, J. Ma, H. Li, R. Zeng, Z.P. Guo, H.K. Liu. Mater. Res. Bul. 44 (2009) 1811-1815.
- [28] Y.L. Jia, H.Q. Wan, L. Chen, H.D. Zhou, J.M. Chen. J. Power Sources 354 (2017)1-9.
- [29] X.Q. Zhu, C. Yang, F. Xiao, J.D. Wang, X.T. Su. New J. Chem. 39 (2015)

683-688.

- [30] Y.B. Lou, D. He, Z.F. Wang, Y.H. Hu, Y. Shen, J. Ming, J.X. Chen. Chem. Eng. J. 313 (2017) 1269-1277.
- [31] Z.N. Deng, Y.J. Hu, D.Y. Ren, S.L. Lin, H. Jiang, C.Z. Li. Chem. Commun. 51 (2015) 13838-13841.
- [32] T.R. Lin, J. Wang, L.Q. Guo, F.F. Fu. J. Phys. Chem. C 119 (2015) 13658-13664.
- [33] Z.M. Wan, J. Shao, J.J. Yun, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng. Small 10 (2014) 4975-4981.
- [34] Y. Xia, B.B. Wang, X.J. Zhao, G. Wang, H. Wang. Electrochimi. Acta 187 (2015) 55-64.
- [35] J. Shao, T. Gao, Q.T. Qu, Q. Shi, Z.C. Zuo, H.H. Zheng, J. Power Sources 324 (2016) 1-7.
- [36] B. Ma, P.Y. Guan, Q.Y. Li, M. Zhang, S.Q. Zang. Acs App. Mater. Inter. 8 (2016) 26794-26800.
- [37] T. Rui, S.J. Zhou, T.R. Ge, Z.M. Yuan, L.W. Yin. J. Mater. Chem. A 5 (2017) 4962-4971.
- [38] J. Shao, Z.M. Wan, H.M. Liu, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng, J. Mater. Chem. A 2 (2014) 12194-12200.
- [39] R.B. Wu, X.K. Qian, X.H. Rui, H. Liu, B.L. Yadian, K. Zhou, J. Wei, Q.Y. Yan, X.Q. Feng, Y. Long, L.Y. Wang, Y.Z. Huang. Small 10 (2014) 1032-1038.
- [40] B.J. Guo, K. Yu, H.Fu, Q.Q. Hua, R.J. Qi, H.L. Li, H.L. Song, S. Guo, Z.Q. Zhu.J. Mater. Chem. A 3 (2015) 6392-6401.
- [41] B. Qu, Y. Sun, L.L. Liu, C.Y. Li, C.J. Yu, X.Y. Zhang, Y.J. Chen. Sci. Rep. 7 (2017) 42772.
- [42] Y. Wang, C.Y. Wang, Y.J. Wang, H.K. Liu, Z.G. Huang. J. Mater. Chem. A 4 (2016) 5428-5435.
- [43] K. Chang, W.X. Chen, L. Ma, H. Li, F.H. Huang, Z.D. Xu, Q.B. Zhang, J.Y. Lee.J. Mater. Chem. 21 (2011) 6251-6257.
- [44] H.B. Geng, H.X. Ang, X.G. Ding, H.T. Tan, G.L. Guo, G.L. Qu, Y.G. Yang, J.W. Zheng, Q.Y. Yan, H.W. Gu. Nanoscale 8 (2016) 2967-2973.

- [45] X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque, Z.W. Chen. Adv. Energy Mater. 5 (2016) 1501106.
- [46] M.J. Hwang, K.M. Kim, K.S. Ryu. J. Electroceram. 33 (2014) 239-245.
- [47] C.Y. Zhao, J.H. Kong, X.Y. Yao, X.S. Tang, Y.L. Dong, S.L. Phua, X.H. Lu. ACS Appl. Mater. Inter. 6 (2014) 6392-6398.
- [48] J. Wang, J.L. Liu, D.L. Chao, J.X. Yan, J.Y. Lin, Z.X. Shen. Adv. Mater. 26 (2014) 7162-7169.
- [49] D. Ji, H. Zhou, Y.L. Tong, J.P. Wang, M.Z. Zhu, T.H. Chen, A.H. Yuan. Chem. Eng. J. 313 (2017) 1623-1632.
- [50] K. Chang, W.X. Chen. ACS Nano. 5 (2011) 4720-4728,
- [51] Y. Chen, B.H. Song, X.S. Tang, L. Lu, J.M. Xue. Small 10 (2014) 1536-1543.
- [52] C. Li, T.Q. Chen, W.J. Xu, X.B. Lou, L.K. Pan, Q. Chen, B.W. Hu. J. Mater. Chem. A 3 (2015) 5585-5591.
- [53] S.J. Ding, D.Y. Zhang, J.S. Chen, X.W. (David) Lou. Nanoscale 4 (2012) 95-98.
- [54] X. Xu, Z.Y. Fan, X.Y. Yu, S.J. Ding, D.M. Yu, X.W. (David) Lou. Adv. Energy Mater. 4 (2015) 1-5.

- The unique MOF-derived Co<sub>3</sub>O<sub>4</sub> covered by MoS<sub>2</sub> nanosheets was prepared by a facile method.
- MOF-derived metal oxides/MoS<sub>2</sub> composites were used as electrode materials for the first time.
- > The composite electrode showed excellent electrochemical properties for LiBs.