头像
论文
Email:
Office:
Address:
PostCode:
Fax:

您是第75 Access

  • 论文列表

    第一和通讯

    [34]  Feng Di(第一作者).The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review[J]. Journal of Central South University, 2023, 30: 2833-2866. 

    (DOI:  https://doi.org/10.1007/s11771-023-5439-9. WOS:001098684500001)

    [33]   Feng Di(第一作者).   Aluminum Alloys and Aluminum-Based Matrix Composites[J]. Metals, 2023,  13(11):1870 

    (DOI: 10.3390/met13111870, WOS:001114583300001)

    [32]  Feng Di(通讯作).  The precipitates and properties evolution behaviors of AlZnMgCu alloy during the retrogression process with slow heating[J]. Journal of materials research and technology, 2023, 26: 3544-3557. (http://doi.org/10.1016/j.jmrt.2023.08.122,   WOS:001107113300001)

    [31] Feng Di(第一作者). Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy during Hot  Deformation[J]. Metals, 2022, 12(11):1982 (SCI.  https://doi.org/10.3390/met12111982, WOS:000895210600001)

    [30] Feng Di(通讯作). Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate[J]. Journal of Central South University, 2022, 29(3): 960-972.(SCI, DOI 10.1007/s11771-022-4960-6WOS:000780982300018)

    [29] 冯迪(第一作者). 喷射沉积过共晶AlSiCuMg合金的时效行为及力学性能[J].中国有色金属学报, 2023,33(5):1399-1412(EI, DOI: 10.11817/j.ysxb.1004.0609.2022-43537)

    [28] 冯迪(通讯作者)喷射成形AlSiCuMg合金的热变形组织及再结晶行为[J].金属学报, 2022, 58(7): 932-943(SCI, DOI 10.11900/0412.1961.2021.00329, WOS:000816121700009)

    [27] 冯迪(第一作者). 喷射成形过共晶AlSiCuMg合金的固溶行为[J].金属学报, 2022, 2002, 58(9):1129-1141(SCI, DOI 10.11900/0412.1961.2021.00079, WOS:000841981600004)

    [26] 冯迪(第一作者). 喷射成形7055铝合金初生相在形变前预热处理中的演变行为[J].稀有金属材料与工程, 2020, 49(12): 4253-4262(SCI, WOS:000607448600033)

    [25] 冯迪(通讯作者)7055铝合金的非等温双级时效行为[J].金属学报, 2020, 56(11): 1497-1507(SCI,WOS:000584345200006)

    [24] 冯迪(通讯作者)非等温时效对7B50铝合金组织及性能的影响[J].金属学报, 2020, 56(9): 1255-1265(SCI,WOS:000576758600008)

    [23] 冯迪(通讯作者)喷射成形AlSi25Cu4Mg 耐磨合金的本构方程及热加工图[J].材料导报, 2020, 34(5): 10120-10126

    [22] Di Feng(第一作者). Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy[J]. Metals and Materials International, 2018, 24(1): 195-204.(SCI,WOS:000419534500024)

    [21] D. Feng(第一作者). Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature[J]. Materials Science & Engineering A, 2014, 608: 63-72.(SCI,WOS:000338404800009)

    [20] D. Feng(第一作者).The effect of pre-ageing temperature and retrogression heating rate on the microstructureand properties of AA7055 [J]. Materials Science and Engineering: A, 2013, 588: 34-42.(SCI,WOS:000328176900006)

    [19] D. Feng(第一作者).Non-isothermal “retrogression and re-ageing” treatment schedule for AA7055 thick plate[J]. Materials and Design, 2014, 60: 208-217.(SCI,WOS:000336668000026)

    [18] DiFENG(第一作者).Rate controlling Mechanisms in Hot Deformation of 7A55 aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 24-35.(SCI,WOS:000330225400004)

    [17] DiFENG(第一作者).Non-isothermal retrogression kinetics for grain boundary precipitate of 7A55 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2014, 24: 2122-2129.(SCI,WOS:000340841700018)

    [16] DiFENG(通讯作者).Oxides distribution and microstructure in welding zones from porthole die extrusion[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 765-772.(SCI,WOS:000324003100027)

    [15] DiFeng(第一作者).Constitutive Equation and Dynamic Softening Behavior of 7A55Aluminum Alloy during Compression at Elevated Temperatures[J]. Materials Science Forum, 2017, 898: 291-299.(EI)

    [14] 冯迪(第一作者).晶粒尺寸对新型高强铝合金热变形行为的影响[J]. 稀有金属材料与工程, 2016, 46(8): 2104-2110.(SCI,WOS:000382410400034)

    [13] 冯迪(第一作者).非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-109.(SCI,WOS:000418584100012)

    [12] 冯迪(第一作者).7A55铝合金-RRA态厚板组织和性能及其均匀性的多因素影响[J]. 中国有色金属学报, 2019,29(6): 1150-1160.(EI)

    [11] 冯迪(第一作者).非等温回归再时效对7055 铝合金中厚板的厚向组织及性均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010.(EI)

    [10] 冯迪(第一作者).预时效温度及回归加热速率对7150 铝合金显微组织性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181.(EI)

    [9] 冯迪(第一作者).预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150.(EI)

    [8] 冯迪(第一作者).7A55 铝合金厚板的微观组织和性能不均匀性[J]. 中南大学学报(自然科学版), 2015, 46(8): 2824-2830.(EI)

    [7] 冯迪(通讯作者)基于Archard 理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报(自然科学版),  2009, 40(5): 1245-1251.(EI)

    [6] 冯迪(第一作者).铝合金空心型材挤压焊合问题的研究进展[J]. 材料导报, 2013, 27(10): 6-9.(EI)

    [5] 冯迪(第一作者).双级时效对Al-8Zn-2Mg-2Cu合金组织及性能的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(5): 642-650.(CSCD)

    [4] 冯迪(通讯作者).铝合金方管分流焊合挤压过程的有限元分析[J]. 中国机械工程, 2009, 20(24): 2393-2397.(CSCD)

    [3] 冯迪(通讯作者).5083 铝合金法兰盘锻造过程的数值模拟[J]. 热加工工艺, 2008, 37(13): 53-58.(CSCD)

    [2] 冯迪(第一作者).H13 钢热变形行为的数学模型[J]. 钢铁, 2010, 45(5): 52-56.(CSCD)

    [1] 冯迪(第一作者).H13 钢制分流模低周疲劳寿命的预测方法及其应用[J]. 钢铁研究学报, 2010, 22(9): 43-47.(CSCD)

    合作发表 

    [13] Jun Zhou, Hengcheng Liao, Hongmei Chen, Di Feng, Weijun Zhu. Realizing strength-ductility combination of Fe3.5Ni3.5Cr2MnAl0.7 high-entropy alloy via coherent dual-phase structure[J]. Vacuum, 2023, 215: 112297.

    [12] Puli Cao, Guilan Xie, Chengbo Li, Daibo Zhu, Di Feng, Bo Xiao, Cai Zhao. Investigation of the Quenching Sensitivity of the Mechanical and Corrosion Properties of 7475 Aluminum Alloy[J]. Metals, 2023, 13, 1656. https://doi.org/10.3390/met13101656.

    [11] Lin GaoYong, Xiao MengQiong, Feng Di, et al. Microstructural and mechanical properties of ZA10 alloy tubes and their weld seams prepared by Conform continuous extrusion[J]. Rare Metals, 2020, 39(6): 707-715.

    [10] Qianghao Zang, Di Feng, et al.  Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling[J]. Journal of Alloys and Compounds, 2020,1847: 56481

    [9] Gaoyong Lin, Xin Tan, Di Feng, et al. Effects of conform continuous extrusion and heat treatment on the  microstructure and mechanical properties of Al–13Si–7.5Cu–1Mg alloy[J]. International Journal of Minerals,  Metallurgy and Materials, 2019, 26(8): 1013-1020   

    [8] Gaoyong LIN, Kun LI, Di FENG, et al. Effects of LaCe addition on microstructure and mechanical properties of Al18Si4Cu0.5Mg alloy[J]. Transaction Nonferrous Metals Society of China, 2019, 29: 15921600.  

    [7] Gaoyong Lin, Weiyuan Song, Di Feng, et al. Study of microstructure and mechanical property heterogeneity throughout the wall thickness of high strength aluminum alloy thick-wall pipe[J]. Journal of Materials Research, 2019, 34(15): 2735-2745. 

    [6] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy[J].Journal of Materials Engineering and Performance, 2020,29: 8414–8421

    [5] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Dynamic Compression Behavior of a Mg–GdBased Alloy at Elevated Temperature[J]. Metals and Materials International, 2019.

    [4] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Effects of Gd, Y Content on the Microstructure and Mechanical Properties of Mg-Gd-Y-Nd-Zr Alloy[J]. Metals,2018, 8, 790

    [3] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effects of thermomechanical processing on the microstructure, texture and mechanical properties of a Mg-Gd-based alloy[J]. Materials Science & Engineering A, 2019 ,759:172-180.

    [2] LIU Jian, LIN Gao-yong, FENG Di, et al. Effects of process parameters and die geometry on longitudinal weldsquality in aluminum porthole die extrusion process[J]. Journal of Central South University of Technology, 2010, 17: 688696

    [1] Tang Chang Ping, Yang Liu, Feng Di, et al. Investigation on Microstructure and Mechanical Properties of a Mg-Gd-Y-Zr Alloy Plate[J]. Materials and Manufacturing Processes, 2012, 27(6): 609-613.



    专著

    冯迪 著高强耐蚀铝合金厚板的均匀制备技术 2019.12