头像
董晨 讲师

经济管理学院

通讯地址:

个人邮箱:202400000062@just.edu.cn

邮政编码:

办公地点:经济管理学院441

传真:

  • 个人简介

  • 科研团队

  • 获奖动态

  • 教学随笔

  • 教育经历

  • 课程教学

  • 论文著作

  • 科研论文

  • 科研横向项目

  • 科研纵向项目

  • 科研专利

  • 科研动物专利

  • 董晨,1995年出生,讲师,管理学博士。研究方向为社交网络分析、舆情传播与控制等,在Expert Systems with ApplicationsInformation SciencesPhysica A等国内外高水平期刊上发表学术论文十余篇

    • 科研项目

      [1]国家自然科学基金面上项目:高维可积模型及特殊解的机械化算法研究,项目编号:118713282019.01-2022.12参与/已结题

      [2] 国家社会科学基金一般项目:基于社交媒体不实信息的重大突发传染病事件辅助预警研究,项目编号:21BGL2172022.01-参与/在研

      [3] 上海市软科学项目:长三角区域人工智能产业协同创新发展路径与对策研究,项目编号:216921098002021.07-2022.06,参与/已结题

      [4] 上海市软科学项目:长三角区域降碳减污协同治理发展路径与对策研究,项目编号:226921122002022.04-2023.03,参与/已结题

    • 论文著作

      [1] Xu G.Q., Miao J.L. and Dong C.* (2025). LGP-DS: A novel algorithm for identifying influential nodes in complex networks based on multi-dimensional evidence fusion. EPL, Early Access.

      [2] Pan X.H., Xu G.Q., and Dong C. (2025). Link prediction in complex networks based on resource transition capacity and local paths. Modern Physics Letters B, Accept.

      [3] Meng L., Xu G.Q., Dong C.and Wang S.J.(2025). Modeling information propagation for target user groups in online social networks based on guidance and incentive strategies. Information Sciences, 691: 121628.

      [4] Meng L., Xu G.Q. and Dong C. (2025). An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect. Physica A-Statistical Mechanics and Its Applications, 657, 130237.

      [5] Dong C.*, Wang H.C., Zhou S.Y. and Zhong H.L. (2024). SEIDR: modeling the competitive propagation of rumor and anti-rumor in complex networks with emotional infection theory. European Physical Journal Plus, 2024, 139: 987.

      [6] Xu G.Q., Dong C.* (2024). CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks. Expert Systems with Applications, 235, 121154.

      [7] Dong C., Xu G.Q. and Meng L. (2024). CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization. Chinese Physics B, 33 (8): 088901.

      [8] Dong C., Xu G.Q.*, Yang P.L. and Meng L. (2023). TSIFIM: A three-stage iterative framework for influence maximization in complex networks. Expert Systems with Applications,212, 118702.

      [9] Yang P.L., Zhao L.J., Dong C., Xu G.Q. and Zhou L.X. (2023). AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality. Chinese Physics B, 32 (5): 058901.

      [10] Dong C., Xu G.Q.*, Meng L. and Yang P.L. (2022). CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy. Physica A-Statistical Mechanics and Its Applications, 603, 127797.

      [11] Xu G.Q., Dong C. and Meng L.* (2022). Research on the Collaborative Innovation Relationship of Artificial Intelligence Technology in Yangtze River Delta of China: A Complex Network Perspective. Sustainability, 14, 14002.

      [12] Lu P.L.*, Dong C. and Guo Y.H.(2022).A novel method based on node’s correlation to evaluate the important nodes in complex networks. Journal of Shanghai Jiao Tong University (Science), 27, 688–698.

      [13] Peng J., Xu G.Q., Zhou X.Y., Dong C. and Meng L. (2022). Link prediction in complex networks based on communication capacity and local paths. European Physical Journal B, 95(9), 152.

      [14] Xu G.Q., Zhou X.Y., Peng J. and Dong C. (2022). SCL-WTNS: A new link prediction algorithm based on strength of community link and weighted two-level neighborhood similarity. International Journal of Modern Physics B, 36(20), 2250120.

      [15] Lu P.L.*, Dong C. (2020). EMH: Extended Mixing H-index centrality for identification important users in social networks based on neighborhood diversity. Modern Physics Letters B, 34(26), 2050284.

      [16] Lu P.L.*, Dong C. (2020). Ranking the spreading influence of nodes in complex networks based on mixing degree centrality and local structure. International Journal of Modern Physics B, 33(32), 1950395.

  • 博士,2021.09-2024.06,管理科学与工程,上海大学

    • 科研项目

      [1]国家自然科学基金面上项目:高维可积模型及特殊解的机械化算法研究,项目编号:118713282019.01-2022.12参与/已结题

      [2] 国家社会科学基金一般项目:基于社交媒体不实信息的重大突发传染病事件辅助预警研究,项目编号:21BGL2172022.01-参与/在研

      [3] 上海市软科学项目:长三角区域人工智能产业协同创新发展路径与对策研究,项目编号:216921098002021.07-2022.06,参与/已结题

      [4] 上海市软科学项目:长三角区域降碳减污协同治理发展路径与对策研究,项目编号:226921122002022.04-2023.03,参与/已结题

    • 论文著作

      [1] Xu G.Q., Miao J.L. and Dong C.* (2025). LGP-DS: A novel algorithm for identifying influential nodes in complex networks based on multi-dimensional evidence fusion. EPL, Early Access.

      [2] Pan X.H., Xu G.Q., and Dong C. (2025). Link prediction in complex networks based on resource transition capacity and local paths. Modern Physics Letters B, Accept.

      [3] Meng L., Xu G.Q., Dong C.and Wang S.J.(2025). Modeling information propagation for target user groups in online social networks based on guidance and incentive strategies. Information Sciences, 691: 121628.

      [4] Meng L., Xu G.Q. and Dong C. (2025). An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect. Physica A-Statistical Mechanics and Its Applications, 657, 130237.

      [5] Dong C.*, Wang H.C., Zhou S.Y. and Zhong H.L. (2024). SEIDR: modeling the competitive propagation of rumor and anti-rumor in complex networks with emotional infection theory. European Physical Journal Plus, 2024, 139: 987.

      [6] Xu G.Q., Dong C.* (2024). CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks. Expert Systems with Applications, 235, 121154.

      [7] Dong C., Xu G.Q. and Meng L. (2024). CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization. Chinese Physics B, 33 (8): 088901.

      [8] Dong C., Xu G.Q.*, Yang P.L. and Meng L. (2023). TSIFIM: A three-stage iterative framework for influence maximization in complex networks. Expert Systems with Applications,212, 118702.

      [9] Yang P.L., Zhao L.J., Dong C., Xu G.Q. and Zhou L.X. (2023). AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality. Chinese Physics B, 32 (5): 058901.

      [10] Dong C., Xu G.Q.*, Meng L. and Yang P.L. (2022). CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy. Physica A-Statistical Mechanics and Its Applications, 603, 127797.

      [11] Xu G.Q., Dong C. and Meng L.* (2022). Research on the Collaborative Innovation Relationship of Artificial Intelligence Technology in Yangtze River Delta of China: A Complex Network Perspective. Sustainability, 14, 14002.

      [12] Lu P.L.*, Dong C. and Guo Y.H.(2022).A novel method based on node’s correlation to evaluate the important nodes in complex networks. Journal of Shanghai Jiao Tong University (Science), 27, 688–698.

      [13] Peng J., Xu G.Q., Zhou X.Y., Dong C. and Meng L. (2022). Link prediction in complex networks based on communication capacity and local paths. European Physical Journal B, 95(9), 152.

      [14] Xu G.Q., Zhou X.Y., Peng J. and Dong C. (2022). SCL-WTNS: A new link prediction algorithm based on strength of community link and weighted two-level neighborhood similarity. International Journal of Modern Physics B, 36(20), 2250120.

      [15] Lu P.L.*, Dong C. (2020). EMH: Extended Mixing H-index centrality for identification important users in social networks based on neighborhood diversity. Modern Physics Letters B, 34(26), 2050284.

      [16] Lu P.L.*, Dong C. (2020). Ranking the spreading influence of nodes in complex networks based on mixing degree centrality and local structure. International Journal of Modern Physics B, 33(32), 1950395.