
Smart Materials and
Structures      

PAPER

Teleoperation control of soft pneumatic fingers
based on visual target recognition of hand bending
features
To cite this article: Jiwen Fang et al 2025 Smart Mater. Struct. 34 105009

 

View the article online for updates and enhancements.

You may also like
Assessment of contact parameters of soft
splined hemispherical finger-tip pressed
against a concave profile
S Yuvaraj, R Malayalamurthi, S
Gokulprasath et al.

-

Soft electroadhesive grippers with variable
stiffness and deflection motion capabilities
Chaoqun Xiang, Zhiwei Li, Xuan Luo et al.

-

The bending control of the soft pneumatic
fìnger
Renxiang Gao, Jiwen Fang, Jinyu Qiao et
al.

-

This content was downloaded from IP address 27.115.123.233 on 09/10/2025 at 11:36



Smart Materials and Structures

Smart Mater. Struct. 34 (2025) 105009 (11pp) https://doi.org/10.1088/1361-665X/ae0d19

Teleoperation control of soft pneumatic
fingers based on visual target
recognition of hand bending features

Jiwen Fang∗, Shuangfa Qin, Jinlei Song, Chong Li and Mingming Lv

School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100,
People’s Republic of China

E-mail: fjw617@just.edu.cn

Received 4 March 2025, revised 25 August 2025
Accepted for publication 28 September 2025
Published 9 October 2025

Abstract
Soft robots possess unique operational advantages in unstructured environments. The
teleoperation control of soft pneumatic fingers, incorporating visual target recognition based on
hand bending characteristics, provides a technological foundation for scenarios such as medical
assistance and hazardous environment operations. It further represents a new paradigm of
contact-free teleoperation control. A multi-cavity soft finger was designed and fabricated using
the silicone rubber material Smooth-Sil 950. A Yeoh model was utilized to establish the
relationship between the input pneumatic pressure and the bending angle, and the bending
characteristics of the soft finger were simulated by the finite element method. A spatial gesture
feature recognition system based on OpenCV is designed by analyzing the HSV (H-Hue,
S-Saturation, V–Value) color space. Analyze the image features of the human hand, identify 21
key points of the human hand based on the MediaPipe framework, and perform theoretical
modeling to design a finger bending angle recognition algorithm. The fuzzy matching mapping
mechanism between the human hand and the soft finger is realized by the different identification
values of the matrix. The activation matrix enables independent control of individual fingers
while maintaining compatibility for multi-finger coordinated control. Integrate the feedback
information from the pressure sensor and the flexible bending sensor to construct the
closed-loop control of the soft finger. Experimental results demonstrate that the multi-chamber
type of soft pneumatic finger achieves precise controllability within 110◦ bending range.
High-precision remote control of the soft robot is realized using only a monocular camera,
while visual recognition of gesture features maintains good robustness even in complex
backgrounds. It validates that closed-loop control of soft robots based on vision is an effective
approach for achieving contactless teleoperation.

Keywords: teleoperation control, soft fingers, visual target recognition, fuzzy matching mapping

1. Introduction

Due to the complexity and unstructured nature of the work
scenarios, higher demands are placed on the dexterity of
the fingers. Rigid fingers require more complex structures
and more precise control to meet such requirements. The
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degrees of freedom of rigid fingers cannot be increased all
the time, and the complexity of their hardware will be dif-
ficult to realize. Compared to rigid fingers, soft fingers have
nearly infinite degrees of freedom and excellent flexibility
and safety [1], which can provide excellent human-computer
interaction as well as damage-free grasping, better environ-
mental adaptability, and can be applied in complex working
environments such as medical aid, disaster rescue, and smart
agriculture. Commonly used materials for soft fingers include
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silicone rubber [2, 3], electroactive polymers [4, 5], and shape
memory alloys [6]. With the rapid development of 3D print-
ing technology and material science, pneumatic soft actuat-
ors made of silicone rubber materials have been widely used.
Currently, commonly used pneumatic soft actuator structures
can be divided into multi-chamber type actuators [7] and fiber-
reinforced actuators [8].

Silicone rubber is usually chosen as the material for soft
fingers because of its simple manufacture, low toxicity, excel-
lent elasticity, and small mechanical damping coefficient value
[9]. Pneumatic mode is widely used because of its green,
lightweight, and easy accessibility. Soft robots have excellent
adaptability and flexibility and show great potential for applic-
ation in the fields of agriculture, medical treatment, rescue, and
home service [10].

At present, soft robots have received extensive attention
and in-depth research from scholars at home and abroad.
Generally, the deformation of a soft finger is mainly in the
form of in-plane bending, focusing on the change of angu-
lar displacement at the tip point of the finger [11, 12]. Feifei
Chen employs b-splines to generate free boundary surfaces
for pneumatic soft robots and uses nonlinear mechanics mod-
eling and shape derivative-based optimization to navigate
the high-dimensional design space [13]. The method can be
used to solve the design problem of multiple cavities by co-
optimization of morphological shapes and pneumatic pres-
sures to achieve multiple target deformation behaviors. Marc
Peral introduces a new deep learning framework that utilizes
visual information to recognize commands from humans pre-
defined in a gesture database, allowing people to use ges-
ture recognition to communicate with robots for teleopera-
tion purposes [14]. A data-driven visual servo control strategy
is developed based on the integrated model to transfer the
feedback error from the rigid soft robot to the robot terminal
coordinate system, eliminating systematic errors and attenuat-
ing the effects of model inaccuracies [15]. Liu proposed a the-
oretical model to evaluate the bending deformation, gripping
force, and loading capacity of hybrid pneumatic soft fingers,
and investigated the effects of various design parameters on
their performance to achieve a balance between the required
flexibility and essential stiffness [16].

Compared with rigid robots, the difficulties in controlling
soft robots are mainly due to the use of soft materials, different
drive technologies [17], and diverse structural designs, which
make soft robots have the characteristics of large deforma-
tion. Therefore, it needs to involve multidisciplinary cross-
analysis research, which leads to many difficulties in model-
ing, feedback, and control algorithms for soft robots. In addi-
tion to the challenges of precision feedback control of soft
robots that need to be overcome, the pressing need for applic-
ations extends the research on soft robots in the direction of
teleoperation.

The teleoperation control technology is currently a hot spot
in robot control research. Combining teleoperation with soft
robot control not only improves the intuition and naturalness
of robot operation but also reduces the user learning cost and
expands the application scenarios of soft robots. Depending
on visual or haptic (or force) feedback is a common approach

to robot teleoperation control [18–20]. Among them, remote
operation based on gesture recognition is gradually becoming
a program that has attracted much attention.

Gesture recognition technology, as a natural and intuitive
human-computer interaction method, has been widely used in
the fields of smartphones and game control. Gesture recogni-
tion requires the use of cameras, sensors, and other devices
to capture user gestures and identify and classify gestures
through image processing, machine learning, and other tech-
nologies. Mapping the recognized gestures to the correspond-
ing robot control commands requires the design of suitable
mapping algorithms and control strategies to achieve accurate
and flexible remote control operations. In addition, the require-
ments of real-time, stability, and user experience of the system
need to be taken into account to ensure the effectiveness and
performance of remote control.

Soft fingers are developing rapidly in the direction of
tactile feedback, force perception, and high-precision con-
trol. However, in the face of special environmental operations
(such as deep-sea exploration and space operations) and other
inappropriate work or inaccessible working conditions cannot
meet the needs of its use. Therefore, it is an effective measure
to accomplish the related work by using teleoperated robots.

Currently, the majority of remote control regarding soft
robots is based on interaction devices such as data gloves to
achieve human-robot collaboration and enable them to com-
plete complex work tasks. Ma proposes a hand movement sys-
tem that simplifies the definition of human hand movements
to facilitate detection and uses inertial sensors mounted on
the hand to obtain additional information about hand move-
ments. Sign language movements can be enabled to control
soft hands to interact with people [21]. Chua employed a single
RGB camera for gesture recognition and localization, utilized
the target detection algorithm YOLOv3 to achieve recognition
from static gestures to dynamic gesture control, and designed
a dataset of all gestures and their corresponding commands
for training. The gestures can be accurately recognized and
show excellent human-computer interaction response during
the execution of gesture commands. However, the method has
the limitation of not being able to accurately output the posi-
tion of the hand pose [22].

Research on the remote control of soft fingers is still in
its infancy. The current research is characterized by the dif-
ficulty of control, serious time delay, and the need for a
large number of datasets to be collected. In this paper, a
simple and fast remote control method is proposed, which
utilizes vision to detect the bending angle of the finger,
and completes the control matching with the soft finger
through the fuzzy mapping mechanism to realize remote
control.

2. Visual object recognition of gestures

The OpenCV visual library uses Python to realize real-time
gesture recognition functions through the camera and relies
on the Mediapipe framework to carry out human hand feature
extraction.
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Figure 1. Gesture image processing and recognition algorithms.

Video streaming is used to achieve the acquisition of hand
images and the real-time image to perform color space conver-
sion and other image pre-processing. The interference of color
information is removed to improve image clarity and recogni-
tion. According to the details of the noise, the Gaussian fil-
tering algorithm is used to reduce the impact of noise on the
image information, so that the image is smooth to facilitate the
subsequent analysis of the image processing. The next step is
to binarize the image in real-time to retain important image
features. The gesture image processing and recognition are
shown in figure 1.

Although human hand skin color is different, skin color is
not affected by light and ethnicity in color space, and skin
color based on gesture segmentation is widely used in the com-
puter vision field. The HSV (H-Hue, S-Saturation, V–Value)
color space model can deal with luminance and color inform-
ation separately, which can effectively reduce the complex-
ity of computation, and the calculation is simple. In HSV
color space, the separation of luminance information and color
information occurs, and human perception of color, lightness,
and darkness in the picture information is also independent
of each other. The color space changes with black and white,
so the HSV color space model is more intuitive and conforms
to the subjective feeling of the user. Therefore, the skin color
segmentation method of the HSV color space is used to extract
gesture-related information.

To reduce the effect of noise and improve the detection, a
Gaussian filter is used to further process the image. The stand-
ard deviation affects the smoothness of the image after pro-
cessing by the Gaussian filter algorithm, and the closer to the
pixel point, the higher the corresponding pixel weight, and the
greater the impact on the pixel point. In conjunction with the
two-dimensional image information to be processed, remem-
ber that the size of the two-dimensional image is m∗n, then
the formula corresponding to a certain element (x, y) on this
image is:

G(x,y) =
1

2πσ2
e
(x−m/2)2 +(y− n/2)2

2σ2
. (1)

To get the obvious effect of the gesture or palm contour, the
image information is binarized. Because of the complexity of
the image information captured by the camera, after complet-
ing the preliminary image processing, it is necessary to per-
form the final pixel processing on the image. That is black-
and-white processing of the image information, eliminating
pixels above or below a certain threshold. Firstly, a threshold
value T is fixed, so that the pixels are compared with the set
threshold value. When it is less than the threshold value, it is
the background, and vice versa. Remember the original image
as f(x,y), then the binarised image is written as w(x,y), which
leads to the following equation:

w(x,y) =

{
1, f(x,y)⩾ T
0, f(x,y)⩽ T

. (2)

The hand detection model is created by the MediaPipe
framework on the real-time video captured by the camera,
which enables real-time hand tracking and recognizes ges-
tures. The average accuracy of its recognition is 95.7% [23].
At the same time, 21 key points within the hand are accur-
ately located, and 3D coordinates are output in real-time. By
mathematically calculating the coordinate information of the
key points, the relevant information of the gesture is obtained.
For example, by calculating the angle between the vectors con-
necting some key points, the bending angle of the finger can
be derived, as shown in figure 2.

To facilitate the derivation of finger bending angles, the
skeletal model of the hand is simplified to the extent that each
phalanx of the four fingers except the thumb has a degree of
freedom to bend toward the wrist point, and the four joints
from the palm to the fingertips are defined as the metacarpo-
phalangeal joints (MCP), the proximal interphalangeal (PIP),
the distal interphalangeal joints (DIP), and the tip points of
the fingers (TIP), respectively. Among these joints, the PIP
and DIP have 1 degree of freedom respectively, the MCP has
2 degrees of freedom, and the degree of freedom of the TIP
is 0. At this point, to conveniently express the properties of
the local coordinate system, the wrist point position is denoted
as W, the middle finger metacarpophalangeal joint position is
denoted as M, and the ring finger metacarpophalangeal joint
position is denoted as R. The unit direction vectors of the axes
of the wrist coordinate system are denoted as x, y, and z. The
conversion can be derived as

x= y× z

y=
−→
WR×−−→

WM∣∣∣−→WR×−−→
WM

∣∣∣
z=

−→
WR+

−−→
WM∣∣∣−→WR+−−→
WM

∣∣∣ . (3)

Since each joint on the finger is in the plane where its finger
is located, for the convenience of calculating the angular data
of the MCP, PIP, and DIP joints, the coordinates of the MCP,
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Figure 2. Establishment of local coordinate system and analysis of joint angles.

PIP, DIP, and TIP joints are denoted as M, P, D, and T, respect-
ively. The angle between the adjacent phalanges of each finger
is denoted as α, β, and γ, respectively. Then the pinch angle
equation can be written as

α= arccos
−−→
MW · −→MP∣∣∣−−→MW∣∣∣ ∣∣∣−→MP∣∣∣

β = arccos
−→
PM · −→PD∣∣∣−→PM∣∣∣ ∣∣∣−→PD∣∣∣

γ = arccos
−→
DP · −→DT∣∣∣−→DP∣∣∣ ∣∣∣−→DT∣∣∣ . (4)

The average of the bending angle of each joint is taken to
replace the actual bending angle. To obtain the actual bend-
ing angle, further calculations are required to obtain the actual
bending angle of each joint. The bending angles of each joint
of the finger are denoted asα ′, β ′, and γ ′, which are calculated
as follows,

α ′ = π −α

β ′ = π −β

γ ′ = π − γ

θ =
α ′ +β ′ + γ ′

3
. (5)

After completing the hand detection throughout the image,
MediaPipe utilizes a hand keypointmodel for fine-grained pro-
cessing. The model uses a regression algorithm to accurately
locate the position of the 21 3D hand keypoint coordinates
of the hand within the detected region [24]. To ensure that
the model accurately obtains the locations of the 21 keypo-
ints of the hand, about 30 000 real images have been manu-
ally labeled, each of which contains 21 sets of 3D coordinates.
The MediaPipe hands module not only labels the locations of
these keypoints but also assigns corresponding labels to them,
as shown in figure 2.

The captured image information can be processed by
MediaPipe to output real-time information on 21 key points,
which all have 3D (X, Y, Z) coordinates. Because the distance
of key points between fingers is determined by the human hand
joints, the distance of key points can be derived from the fol-
lowing formula,

lij =
√
(xi− xj)

2
+(yi− yj)

2
+(zi− zj)

2
. (6)

Based on the direction vectors of the lines between the key-
points on each finger, the bending angle of the finger can be
calculated from the angle between the two space vectors. For
example, the direction vector of the line connecting the 10th
and 11th key points is m = (m1, m2, m3), and the direction
vector of the line connecting the 11th and 12th key points is
n = (n1, n2, n3), then the angle of the space vectors of the two
line segments can be calculated from the following formula,

cosφ ij =
m1n1 +m2n2 +m3n3√

m2
1 +m2

2 +m2
3

√
n21 + n22 + n23

. (7)

Gesture recognition starts with the acquisition of data from
the human hand, and the transfer of information is com-
pleted by recognizing the image information of the human
hand through mathematical algorithms, as shown in figure 3.
Keypoints are identified by combining the skeletal structure of
the human hand. The meaning expressed by a particular ges-
ture is then recognized by a particular combination of these
key points, for example, the bending of a particular finger.

In the process of gesture recognition, to reduce the adverse
effects of hand movement, the sampling data of a fixed inter-
val is averaged. Therefore, the bending angle of the finger
obtained can be written as

φ i =

n∑
j=1

φ ij

n
. (8)
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Figure 3. Hand keypoints detected using MediaPipe.

Table 1. The input and output based on the fuzzy matching
mechanism.

Input p 1 2 3 4 5 6

Output k 1 3 5 7 9 11

The fuzzy matching mechanism is used to realize the map-
ping between the hand and the soft finger. The fuzzy input pi
was constructed from the averaged bending angleφi of the fin-
ger as a variable.

pi =

[∣∣∣∣φ i+ a
a

∣∣∣∣] (9)

where a is the value of the mapping interval. For the conveni-
ence of subsequent experiments, the value of a is 20.

The output of fuzzy matching is a scale factor ki. The rela-
tionship between the input and output of the fuzzy mechanism
is shown in table 1. The reference angle value θi of the corres-
ponding soft finger can be obtained by multiplying the scale
factor ki with the set value b,

θi = ki
∗b (10)

where i is the finger number (i= 1, 2, 3, 4, 5). For experimental
convenience, the value of b is set to 10.

The five-finger reference input of the soft finger can be
obtained by multiplying the angle matrix A with the activa-
tion matrix S. The main diagonal value of the angle matrix A
is the input angle value corresponding to the soft finger. All
other values are 0,

Aij =

{
θi i = j
0 i ̸= j

. (11)

The activation matrix S can be regarded as a switch for sub-
sequent bending control. When the variable si in the activation
matrix is 1, it means that the corresponding soft finger will per-
form bending control. When the value of the variable si is 0, it

means that the corresponding finger is not deformed,

S=
[
s1 s2 s3 s4 s5

]T
si =

{
0 off
1 active

. (12)

3. Fabrication and simulation analysis of soft finger

The designed five-finger soft robot is mainly divided into soft
actuator and hand support parts. The soft actuator adopts a
multi-cavity type drive structure, which is made through 3D
mold design, silicone casting, and actuator curing andmolding
processes, as shown in figure 4. The soft actuator is modeled
after the shape of a finger, which mainly includes a pneumatic
inner cavity, a restriction layer, a finger connector, and an air
channel. The outer side of the drive layer is semi-cylindrical
and increases the equal spacing of the raised structure. The
inner side is a semicircular thin-walled cavity structure with
a semicircular groove ventilation channel. The air chambers
inside the soft finger are independent of each other, and the air
channels in the restriction layer connect the air chambers in
series into a closed whole. The hand support is completed by
direct 3D printing using additive manufacturing. The detailed
structural parameters of the soft robotic finger are described in
table 2.

The support member is provided with a boss at each finger
joint to act as a fixation to prevent axial rotation or sliding of
the soft finger. The interior is provided with an air channel,
and a groove structure is designed on its front side to enhance
friction. The back side is provided with grooves of a certain
depth and a cover plate to facilitate the rational arrangement
and fixation of the air tubes.

The soft finger is made of Smooth-Sil 950 silicone rubber
in a 10:1 ratio of uniformlymixed Silicone A and Silicone B. It
is subjected to vacuum defoaming and thermostatic oven cur-
ing. Silicone adhesive is used to bond the driver layer, limiting
layer, and air tubing, which are also fastened with tie wraps.
The bending sensor is fixed in the inner groove on the outer
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Figure 4. Design and fabrication of soft finger.

Table 2. Soft finger structure parameters.

Parameters Value (mm) Parameters Value (mm)

Total length (l) 87.1 Thickness of
bottom (t1)

4

Total width (w) 18 Thickness of top (t2) 1.5
Total height (h) 13 Inner width (k1) 2.5
Inner diameter (d1) 6 Groove width (k2) 1.5
Outer diameter (d2) 14 Groove radius (k3) 5

side of the limiting layer of the soft finger, and the end of the
bending sensor is fixed with a tie-wrap so that it can be dis-
assembled repeatedly without affecting usability. Each of the
five soft fingers is assembled to the support member according
to the manual structure, and the support plate secures each of
the five air tubes separately and independently of each other.

The bending deformation of the soft finger is simulated
based on the Yeoh model with the help of ABAQUS finite ele-
ment analysis software. The influence of the bending sensor on
the bending deformation of the soft finger is ignored. The fixed
end of the soft finger is clamped to the support, and air pres-
sure of different size values is applied to observe the bending
deformation of the soft finger. The relationship between the
simulation and experimental results about the bending angle
of the finger is shown in figure 5.

The experimental variation trend is consistent with the
results obtained by the simulation. Because of measurement
errors and the presence of bending sensors installed in the lim-
iting layer, the experimental data curve does not coincide with
the simulation result curve completely.

4. Experiments and results

The experimental platform is mainly composed of a drive
module, control module, and sensing module, as shown in
figure 6. Among them, the drive system is mainly composed

Figure 5. Simulation data and experimental data.

of an air pump, an oil mist separator, an electromagnetic pro-
portional valve, a manual regulator, a 24 V power supply, and
a soft finger. The control system mainly includes a Raspberry
Pi 4B, an ADC module, an air pressure sensor, and a bending
sensor. The experimental platform can complete the bending
experiments of the soft finger and the remote operation control
experiments.

The remote operation system mainly includes a gesture
recognition processing unit and a soft finger control processing
unit. The teleoperation system operates the operator independ-
ently from the closed-loop control of the finger. The first-level
processing unit only needs to process the human hand image,
read the human finger bending angle information, and transfer
the data to the control system processing unit. The second-
level processing unit needs to be based on the hand bending
angle information sent by the previous level processing unit
as the reference input of the soft finger, and through the return
of the bending sensor and air pressure sensor to form a closed-
loop control. Thus, the remote operation control of the soft
finger based on visual gesture recognition is realized.

Based on the computer vision technology, remote operation
control experiment is mainly through the visual input device,
which will send gesturing image input to the upper computer,
after a series of image processing, and then extract based on
the video stream of the key information of the hand and cal-
culate the bending angle of the finger. Finally, the recognized
information will be sent to the control unit. The final realiz-
ation of human gestures and the computer interaction control
effect. The processing unit of the gesture recognition system
uses Pycharm programming software as the upper computer
and Raspberry Pi4B as the lower computer to communicate
with the upper computer, using a camera to obtain the video
data stream and receive human gesture information through
OpenCV.

In the experiment, the human hand is fixed in position,
facing the camera and adjusting the finger bending state, and
the camera transmits the captured image information to the
Raspberry Pi shown in figure 7. The bending sensor on the lim-
iting layer of the soft body driver transmits the angle inform-
ation to the Raspberry Pi through the ADC module, and the
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Figure 6. Experimental platform.

Figure 7. Control flow of the remote operation system.

Raspberry Pi compares the received gesture recognition angle
signal with the bending sensor angle information. When there
is a difference between the two data, the Raspberry Pi adjusts
the PWM signal to control the opening of the electromag-
netic proportional valve, and at this time, the barometric pres-
sure sensor transmits the detected barometric pressure data
back to the Raspberry Pi through the ADC module, precise
control of the electromagnetic proportional valve is achieved
and closed-loop control is formed. The control system pro-
cessing unit uses a Raspberry Pi 4B to control the whole sys-
tem. Raspberry Pi adjusts the gas input of the real electromag-
netic proportional valve to the soft finger by outputting PWM
signals through the PID control algorithm. Through the bend-
ing sensor and air pressure sensor, the soft finger can realize
closed-loop control.

The PID control algorithm is utilized to realize the pre-
cise control of the soft finger. By setting different PID con-
trol parameters, the bending measurement results are shown
in figure 8. The control performance is evaluated based on fin-
ger response (rise time) and stability (steady-state error), with
greater emphasis on angular error during steady-state control.
Experimental results indicate that the rise time is minimized
whenKp= 0.16 or 0.17, while the steady-state error is minim-
izedwhenKi= 0.06. AlthoughKd has a relativelyminor influ-
ence on the system, it suppresses overshoot during large-angle
bending. Therefore, comprehensive analysis suggests that the
configuration with coefficients Kp = 0.16, Ki = 0.06, and
Kd = 0.01 yields optimal performance comparatively.

The tip displacement of a soft finger is most pronounced
under pneumatic actuation. Take the end of the soft finger as

7
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Figure 8. PID control experiment based on different parameters.

Figure 9. Simulation and experimental comparison of soft fingertip
motion trajectories.

the origin (0,0), and its side as the plane to establish a 2D plane
right-angle coordinate system, measure the coordinates of the
end of the soft finger, to get the specific situation of its bend-
ing, and the simulation and experimental comparisons of the
coordinates of the end trajectory are shown in figure 9. From
the figure, it can be observed that the moving distance of the
soft finger in the y-axis direction is more than that in the x-axis
direction, which indicates that it has a superior upwardmoving
ability. It also confirms the validity of the bending deformation
theory from the side. This deformation trend implies that the

Figure 10. 3D grayscale image of the human hand.

soft finger has a strong load-bearing capacity when grasping
objects.

To improve the accuracy of the capture of the human hand,
the image processing of the human hand is carried out to
improve the efficiency of the Raspberry Pi image processing,
and the three-dimensional grayscale image of the human hand
after the enhancement of the features is shown in figure 10,
which shows that it can be seen that the features of the
palm and the five-fingered joints points are prominent. The
acquired images contain various noises that interfere with ges-
ture recognition. The Gaussian filtering algorithm is employed
to perform smooth processing on the images. In the processed
images, hand contours are well-defined, thereby improving the
accuracy of gesture recognition.

8



Smart Mater. Struct. 34 (2025) 105009 J Fang et al

Figure 11. Hand recognition in different light-intensity conditions.

Figure 12. Hand recognition in different complex background conditions.

To detect the accuracy of gesture recognition, the human
hand in different lighting conditions for gesture recognition
experiments and recognition results are shown in figure 11.
It can be seen that the human hand can still be captured and
recognized by the camera under different strong and weak
lighting conditions. The human hand is in different back-
grounds for hand recognition experiments, and the recogni-
tion results are shown in figure 12. The recognition system is
still able to track hand gestures and perform data computation
promptly under complex background conditions.

To test the effectiveness of teleoperation control of soft
finger movement and to reduce the difficulty of the exper-
iment, the middle finger was selected as the object of the
experiment, and several groups of bending angles (30◦, 50◦,
70◦, 90◦, 110◦) were set to conduct teleoperation experi-
ments, and the experimental results are shown in figure 13.
The system latency in the remote closed-loop control of
soft pneumatic fingers using vision-based gesture recogni-
tion primarily originates from image processing and pneu-
matic actuation processes. The significant hysteresis inherent
in pneumatic actuation constitutes the main factor contribut-
ing to the experimental delay. Experimental results demon-
strate that a soft finger, employing HSV-based skin seg-
mentation, MediaPipe keypoint extraction, fuzzy mapping,
and PID closed-loop control, accurately tracks the bending
angle of a human finger. Based on the closed-loop con-
trol, the real-time bending steady-state errors are within
5◦. This reveals the precise controllability of the multi-
chamber soft pneumatic finger within the 0–110◦ bend-
ing range, validating the effectiveness of the teleopera-
tion strategy integrating vision recognition with pneumatic
control.

Furthermore, this vision-based remote control method
achieves high-precision operation relying solely on a mon-
ocular camera, eliminating the need for marker-free control.
It overcomes the limitations of traditional data gloves, avoids
dependence on their complex hardware, and reduces exper-
imental costs and control complexity. Experimental results
confirm the system’s feasibility and robustness within the 110◦

range, providing a technical foundation for applications such
as medical assistance and operations in hazardous environ-
ments. Decoupled control via activationmatrices enables inde-
pendent finger actuation (only the middle finger was activated
in this experiment), laying the groundwork for multi-finger
coordinated manipulation.

5. Conclusion

A finger based on a multi-cavity structure soft actuator is pro-
posed, and its bending deformation is analyzed by finite ele-
ment simulation. Silicone rubber material 950 and 3D printing
technology are utilized to complete the fabrication of the soft
robot. Through the bending control experiments on a single
soft driver, the experimental data and simulation data results
are similar. Through Python and OpenCV to build a gesture
recognition system based on visual recognition, to improve
the method of image recognition to effectively solve the defi-
ciencies of high latency and large errors in the common ges-
ture recognition, so that the recognition judgment of the ges-
ture and the extraction of data are more accurate and efficient.
Combining computer vision technology, sensor technology,
and pneumatic soft body drive control, a teleoperation system
based on soft finger closed-loop control is established. The soft
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Figure 13. Remote operation control experiment for different angle bending: (a) 30◦, (b) 50◦, (c) 70◦, (d) 90◦, (e) 110◦.
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finger teleoperation control experiment shows that the teleop-
eration system has good robustness and feasibility.

Soft robot teleoperation based on gesture recognition still
faces some challenges. For example, the accuracy and stabil-
ity of gesture recognition need to be further improved, espe-
cially in complex environments where the recognition per-
formance still needs to be improved. The teleoperation sys-
tem of this robot is user-friendly, but it still exhibits certain
delays. The latency primarily originates from two aspects:
one is the process of recognizing hand gestures through
visual methods, while the other is the process of pneumatic
actuation. In addition, the real-time and latency problems of
remote control manipulation need to be effectively solved to
ensure the smoothness and responsiveness of user operations.
This method eliminates the need for traditional array sensors,
avoids processing signals frommultiple sensors, increases sig-
nal processing speed, reduces control complexity, and offers
a novel approach to contact-free teleoperation for soft robots.
Despite the many challenges, soft robot remote control tech-
nology based on gesture recognition is still full of great devel-
opment potential. In the future, with the continuous progress
of artificial intelligence, machine learning, and other tech-
nologies, it is believed that this field will make more signi-
ficant breakthroughs and progress, bringing more application
scenarios.
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