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Accurate prediction of ship fuel consumption is essential for maritime energy optimization and emission reduc-
tion. Due to the complex interactions among navigation-related factors such as ship speed, wind, draft, waves,
and currents, ship fuel consumption exhibits strong nonlinear, non-stationary, and multi-scale characteristics,
posing challenges to conventional prediction methods. To address this, a hybrid prediction framework is pro-
posed, integrating multi-scale wavelet decomposition (MWD), a residual sparse graph convolutional network
(ResGCN), and an improved long short-term memory network (iLSTM). Key features are selected using random
forest, and a residual sparse graph based on mutual information is constructed to capture nonlinear inter-feature
dependencies while enhancing information propagation and mitigating over-smoothing. The iLSTM combines the
strengths of structural and memory-augmented LSTM variants, improving spatiotemporal modeling and compu-
tational efficiency. MWD decomposes the input into frequency sub-bands to separate trends from fluctuations,
with a dynamic attention mechanism enhances cross-scale feature fusion. Experimental results show the proposed
model achieves a peak R? of 0.9667 and a MAPE of 4.051 %, demonstrating exceptional accuracy, robustness in

Improved long short-term memory network
Dynamic attention mechanism

ship fuel consumption forecasting.

1. Introduction

Amid tightening IMO decarbonization mandates and global carbon
neutrality pledges, ship fuel optimization has become a make-or-break
factor for achieving Poseidon Principles compliance. Accurate predic-
tion of fuel consumption offers vital decision support for reducing oper-
ating costs (Zhou et al., 2023), advancing energy conservation and emis-
sion reduction (Xiao et al., 2025), achieving carbon neutrality goals, and
optimizing routes (Hu et al., 2022).

In particular, ship fuel consumption is influenced by factors such as
speed, wind, waves, currents, and load, which exhibit non-stationarity,
nonlinearity, and multi-scale spatiotemporal complexity. Current ship
fuel consumption prediction methods are broadly categorized as: white
box models (WBMs), black box models (BBMs), and gray box models
(GBMs) (Fan et al., 2022).

WBMs build on ship propulsion physics, which ensures strong
physical interpretability (Tillig and Ringsberg, 2019; Orihara and
Tsujimoto, 2018). However, WBMs require high-precision parameter
measurements and accurate modeling in complex conditions, making
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dynamic adjustments and reliable predictions challenging (Vinayak
et al., 2021). BBMs use historical data exclusively, applying statistical or
machine learning methods, which makes them ideal for data-rich prac-
tical applications (Yan et al., 2021). GBMs merge physical mechanisms
with data-driven approaches, integrating domain knowledge while us-
ing data to calibrate and supplement parameters (Chen et al., 2019).
This hybrid methodology excels in modeling complex navigation sce-
narios (Odendaal et al., 2023). Moreover, their data-driven compo-
nents suffer from data constraints, while parameter calibration adds
complexity.

Consequently, recent studies increasingly shift toward deep learning-
offering powerful nonlinear modeling in high-dimensional spaces-with
initial efforts primarily using feedforward neural networks. Moreira
(Moreira et al., 2021) applied a backpropagation (BP) network to model
fuel consumption relative to ship speed under varying sea conditions,
achieving good accuracy. Yan (Yan et al., 2020) employed radial ba-
sis function (RBF) networks, known for their faster convergence and
superior generalization compared to traditional BP models. However,
both BP and RBF networks suffer from limitations, including sensitivity
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to initialization, poor scalability with high-dimensional inputs, and an
inability to effectively capture sequential dependencies.

To address these constraints, researchers increasingly adopt recur-
rent architectures. Zhang (Zhang et al., 2024) introduced an attention-
enhanced bidirectional LSTM model, effectively integrating multi-
source data to achieve superior performance over standard LSTMs in
fuel consumption prediction. Concurrently, Wang (Wang et al., 2023)
developed a GA-LSTM model, utilizing genetic algorithms to optimize
hyperparameters and enhance prediction accuracy under dynamic op-
erating conditions.

Despite excelling at temporal dependencies, recurrent networks of-
ten assume feature independence and lack explicit modeling of struc-
tural correlations (Chen et al., 2024). Yet ship parameters, such as speed,
wind, draft, and wave dynamics, exhibit strong nonlinear interdepen-
dencies, necessitating joint modeling of temporal sequences and pair-
wise feature interactions for accurate bunker fuel forecasting (Li et al.,
2023).

To advance temporal dynamics modeling, studies enhance neu-
ral networks’ sequential learning capability. Zhao (Zhao and Zhao,
2025) pioneered DeepONet-based coupled models employing branch-
trunk decomposition to jointly learn multi-dimensional motion sig-
nals for ultra-short-term ship prediction. Mao (Mao et al., 2025) de-
veloped the TF-Informer framework, integrating temporal convolu-
tional networks, frequency enhanced channel attention, and informer
modules, to capture both transient variations and voyage-scale de-
pendencies. In parallel, recent studies incorporated signal decompo-
sition techniques to address nonlinearity and nonstationarity in mar-
itime time-series forecasting. Zhang et al. (2022) applied wavelet
transform with hybrid statistical-neural models, while Hou et al.
(2024) demonstrated that ensemble empirical mode decomposition
(EEMD) combined with LSTM can effectively exploit multi-scale compo-
nents for improved predictive accuracy. These innovations demonstrate
multiscale attention architectures’ efficacy for maritime time-series
modeling.

While such improvements enhance temporal learning, the structural
dependencies among features remain underexplored. Graph neural net-
works (GNNs), particularly graph convolutional networks (GCNs), pro-
vide a natural solution by representing features as nodes and learning
their relationships through message passing. However, most GCN-based
approaches rely on static or fully connected graphs, failing to capture
the inherent sparsity and evolving nature of feature interactions. This
often results in redundant information propagation and oversmoothed
node representations (Qureshi et al., 2023). On the other hand, standard
LSTM networks face limited representational capacity and lack paral-
lelism, restricting their efficiency in capturing long-range dependencies
in complex temporal data.

To overcome the limitations of existing models in capturing the non-
linear, dynamic, and structurally interdependent characteristics of ship
fuel consumption, this paper proposes a unified multi-branch predic-
tion framework. The model integrates multi-scale wavelet decomposi-
tion, a sparse residual graph convolutional network, and an improved
long short-term memory network, with a dynamic attention mechanism
enhancing cross-scale feature fusion. Experimental results show that the
proposed model achieves a peak R? of 0.9667 and a MAPE of 4.051 %,
demonstrating superior accuracy and robustness under complex mar-
itime conditions.

2. Methods

We propose a multi-branch ship fuel consumption prediction model
integrating multi-scale wavelet decomposition, a sparse residual graph
convolutional network, an improved long short-term memory network,
and an attention mechanism. The model captures the complex interac-
tions among multiple feature variables and their temporal dependencies.
The overall process of the prediction method is shown in Fig. 1.
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2.1. Wavelet decomposition

To enhance multi-scale temporal modeling, this paper employs n-
layer wavelet decomposition on the original input sequence x(). This
decomposition hierarchically separates the sequence into sub-sequences
at distinct frequency levels, capturing both the overall trend and local
disturbances. The resultant representation comprises a low-frequency
approximation A,(r) and multiple high-frequency detail components
D, (1), Dy(0), ..., D, (1):

x(t)= A, () + Y D;(1) )}
j=1

where the low-frequency approximate component A,(¢) describes the
slowly varying trend of the time series, while the high-frequency de-
tail component D;(r) captures rapid fluctuations and abrupt changes at
different scales. This decomposition effectively breaks down the orig-
inal signal into a set of temporally structured, multi-scale features,
yielding a more detailed and structured representation for subsequent
modeling.

2.2. Residual sparse graph convolutional network

2.2.1. Graph convolutional network

The GCN is a deep learning method specifically designed for graph-
structured data, effectively modeling complex node relationships in non-
Euclidean space (Bhatti et al., 2023). GCN performs feature aggrega-
tion and node representation updates through a propagation mechanism
based on the graph adjacency matrix, capturing structural semantics be-
tween nodes.

For a given undirected graph G = (V, E), where V represents the
node set and E represents the edge set, each node v; € V' in the graph
has an input feature vector x;. GCN normalizes the adjacency matrix:

A=D"2ip /2 ©))

where A = A + I is the adjacency matrix with self-loops, and D is the de-
gree matrix of A. Perform hierarchical propagation and transformation
on the input feature matrix X:

HD = (AHOW D) 3

here, H® is the node feature matrix of the I/-th layer, with the ini-
tial layer H® = X being the input feature matrix; W is the learn-
able weight matrix of the /-th layer; and o(-) represents the activation
function (such as ReLU). This formula indicates that the feature up-
date of each node is the weighted average of its own and neighbor-
ing node features, thereby achieving the fusion and expression of local
information.

Although GCNs can expand a node’s receptive field by stacking
multiple layers, increasing network depth often faces issues like over-
smoothing and gradient decay. These problems lead to representational
homogeneity among nodes and performance degradation (Qi et al.,
2021). To mitigate this issue, this paper adopts ResGCN architecture.
This structure incorporates residual connections after each graph con-
volutional layer. Specifically, the input features from the previous layer
are added to the current convolution output, expressed as:

HD = (AHOW D) + HO @

Each layer incorporates residual connections, facilitating cross-layer
feature transfer. This mechanism enhances the expressive power and
training efficiency of deep GCNs. By preserving low-level features during
training, residual connections strengthen the network’s representational
capacity and training stability, leading to enhanced performance when
stacking multiple GCN layers.

2.2.2. Sparse graph convolutional network
In ship fuel consumption prediction, high-dimensional and redun-
dant features can significantly impair model performance. Certain in-
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Fig. 1. Overall process of prediction method.

put variables contribute minimally and may even introduce noise, po-
tentially leading to overfitting and computational inefficiency (Zhang
et al., 2024). To mitigate these issues, we implement a two-step strat-
egy for constructing an informative yet sparse feature graph: (1) feature
screening based on random forest importance, and (2) sparse graph con-
struction leveraging mutual information (see Fig. 2).

Random forest, a widely adopted ensemble learning method, com-
prises multiple decision trees trained on bootstrapped samples and ran-
dom feature subsets. It exhibits strong resistance to overfitting and ef-
fectively estimates feature relevance (Wen et al., 2022). The importance
of a feature f; is quantified by the aggregate reduction in mean squared
error (MSE) it contributes across all splits and trees. Specifically, for a
split node utilizing feature f;, the MSE reduction is computed as follows:

AMSE = MSE (el MSE,,,,

parent

Nyi
+ M SE,gp) (5)

parent

parent

where MSE,,,, is the MSE of the parent node before splitting.
MSE; and MSE,;,, are the MSE of the left and right child nodes
after splitting, respectively. N,,o.> Njo1» and N, are the number of
samples of the parent node and the left and right child nodes, respec-
tively.

By aggregating the M S E reductions for each feature across all trees,
we derive a quantitative importance score. This screening step effec-
tively filters out irrelevant or marginally relevant features, thereby en-
hancing the efficiency and performance of subsequent modeling stages.

Following this feature screening, we construct a sparse graph based
on the statistical dependencies among the selected key features. Moving
beyond assumptions of predefined or fully-connected relationships, we
utilize mutual information to quantify the dependency strength between
any pair of features. Given that the feature variables are discrete, the
mutual information between two discrete random variables f; and f; is

Y
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t

* Mutual information
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—/ :
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Fig. 2. Feature screening and sparse graph construction.

defined as:

Pf,,f/(X,y)
MI(f;, ;) = e (x,»)1 _— 6
Vel xg;eyez;‘;pf“f/ () Og(Pf,-(X), Pf,-(y)> ©

where: X and Y denote the value spaces of f; and f;; p il (x,y) is the
empirical joint probability of f; = x and f; = y; p 7, () and p 1, (y) are the
marginal probabilities of f; and f;, respectively.

Following computation of the mutual information matrix M € R™",
a sparsification procedure is performed using threshold 8. This produces
a sparse, data-driven graph topology that selectively retains salient fea-
ture dependencies while suppressing noisy or redundant connections.
The resultant adjacency matrix A is constructed as follows:

if MI(f,, f,) > 6
otherwise

A= { My /) >
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2.3. Improved long short-term memory network

2.3.1. Long short-term memory network

To address the vanishing gradient problem inherent in traditional
RNNs for long-sequence modeling, LSTM incorporates three gating
mechanisms-forget gate, input gate, and output gate (Hochreiter and
Schmidhuber, 1997). The gating operations are formally defined as fol-
lows:

{l‘t,ft,Ot} = G({ix’fpay})
= 0(W %+ Rl + b ) ©)

where i, f;,0, represent the activation values of the input gate, forget
gate and output gate respectively. 7, f;, 5, are their corresponding input
signals. W (i, f, 0)", R(, f,0) and b(i, f, 0) represent the weight matrix,
recurrent weight matrix and bias term respectively. h,_; is the hidden
state of the previous moment. ¢ is the sigmoid function.

The update of memory cell ¢, is given by:

7, = p(Z) = W] x, + R.h,_y +b,) 9
¢ =fioq_ +i -z, (10)

where ¢ represents the activation function tanh. ¢,_; is the memory state
of the previous moment. f, and i, control the forgetting of old informa-
tion and the introduction of new information.

The output of the hidden state is modulated by the memory unit:

h, = 0,h, = o, tanh(c,) an

While LSTM effectively model long-range sequences, they exhibit
inherent limitations including finite storage capacity, difficulty in re-
vising past decisions, and constrained parallelism due to memory mix-
ing effects (Beck et al., 2024). To overcome these constraints, the ex-
tended LSTM (XxLSTM) architecture was developed. This framework in-
tegrates two enhanced variants: scalar-state LSTM (sLSTM) and matrix-
state LSTM (mLSTM), which respectively augment storage precision and
capacity.

Specifically, sSLSTM incorporates an exponential gating mechanism
derived from conventional gating structures, replacing the Sigmoid ac-
tivation function:

{is, fi} =exp (V‘/(If)xt + R pyhyy + b(::,f)) a2
no=fi-n_y+i; (13)

Through state normalization, SLSTM achieves more precise regula-
tion of information retention/forgetting, enhances historical state cor-
rection capability, and improves numerical stability. As show in Fig. 3.

mLSTM expands the memory unit from a scalar to a matrix, ¢, €
R9*4, This matrix representation enables storage of multiple state vec-
tors, substantially enhancing model representational capacity and oper-
ational flexibility. The gating computations for mLSTM are formalized
as follows:

{in 1) = exp ({7, 7)) = exp (W] % + ) (14)
ne=fomg ik (15)
16)

. T
a=fiativ -k

where v, and k, represent the value vector and key vector. f, and i,
correspond to the weight decay rate and learning rate, reflecting the
effective integration of the fast weight storage mechanism (Schlag et al.,
2021).

To stabilize state reading, mLSTM incorporates max-normalization,
with its hidden state formally defined as:

4G =Wyx,+b,, k = %ka, +by, v,=Wyx, +b, a7)
d
ho=0,0h, T Gt (18)

"7 max (|n] 4. 1)

The output gate subsequently modulates the final cell state to pro-
duce the layer output:

o,=0(5,), 0, =W,x +b, 19

Relative to LSTM, mLSTM eliminates inter-unit hidden state connec-
tions. This architectural modification mitigates sequence dependencies
induced by memory mixing effects, thereby enabling efficient parallel
computation.

2.3.2. Improved long short-term memory network

To address the architectural imbalance within the xLSTM frame-
work, where sLSTM provides high accuracy but suffers from poor par-
allelism, while mLSTM supports parallelism but lacks temporal model-
ing precision, we propose iLSTM. The iLSTM retains mLSTM’s parallel-
friendly backbone but incorporates targeted architectural modifications
to enhance both representational expressiveness and training efficiency.

Unlike sLSTM, which relies on sequential memory updates and
parallelism-hindering multi-gated block-diagonal transformations, iL-
STM avoids serial bottlenecks by leveraging mLSTM’s matrix-based
memory mixing.

Compared to mLSTM, the proposed iLSTM introduces several archi-
tectural refinements to improve expressiveness while maintaining effi-
ciency. First, we remove the learnable skip connection. This simplifies
the information pathway, reduces redundancy, and facilitates more sta-
ble optimization. Second, to better encode short-term temporal depen-
dencies, we apply a kernel-size-4 causal convolution prior to projection.
This ensures autoregressive consistency while enhancing local context
modeling. For projection, we retain block-diagonal transformations for
generating queries and keys, but adopt a lightweight up-projection strat-
egy for values. This reduces computational overhead compared to mL-
STM'’s convolution-based value processing. Finally, we replace the orig-
inal output gate and skip fusion mechanism with a gated multi-layer
perceptron (MLP). This MLP, comprising up-projection, GeLU activa-
tion, and down-projection, offers superior non-linear modeling capacity
at minimal additional cost. Fig. 4 illustrates the complete iLSTM archi-
tecture.

2.4. Dynamic weighting attention mechanism

To leverage multi-scale subsequence information from wavelet de-
composition, we introduce a dynamic attention mechanism after sub-
band modeling for adaptive multi-frequency feature fusion. Unlike static
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Attention

weighting approaches, this mechanism’s key innovation lies in contex-
tual awareness-dynamically modulating sub-band weights in the final
output according to the input state at each prediction time step, as il-
lustrated in Fig. 5.

Formally, given an original time series decomposed into n frequency-
specific sub-bands (e.g., high-frequency components D, D,, ..., D, and
low-frequency approximation A,), the attention module computes im-
portance weights (x]({t) at t based on each sub-band model’s output repre-
sentation. These weights determine the contribution of each sub-band
to the aggregated prediction.

For the kth subband prediction output &
g

L’) at a given time step 7, its

attention score s, is calculated by:

sO=whh + b (20)

All scores {sg) }%_, are normalized by the softmax layer to obtain the

@,

attention weight a;

Ocean Engineering 343 (2026) 123191

NG
ek
o =

k N (0
2o €
Finally, the weighted fusion of multi-subband prediction outputs can
be expressed as:

2D

n

) _ (GEENG)
Y = Zak b

n
s.t. Z al(:) =1 (22)
k=1 k=1

where h;” represents the predicted output representation of the kth sub-
band at time step 1. (x,(([) is the weight coefficient dynamically generated
by the attention network.

This mechanism enhances model interpretability: analysis of tem-
poral weight distributions reveals whether the model prioritizes
high-frequency disturbances or low-frequency trend information at spe-
cific timesteps.

3. Experimental design and model validation

To evaluate the proposed prediction model, this section details the
experimental methodology encompassing data preparation, feature se-
lection, model configuration, and evaluation metrics.

3.1. Data preparation

This study utilizes voyage data recorder (VDR) datasets collected at
10-min intervals from a RoPax ferry operating fixed routes in May 2024.
The RoPax ferry features a length of 189.5m, a width of 26.5m, and a
draft of 6.5m. With a maximum speed of 23 knots, the ship has a total
tonnage of 32,729 tonnes.

The dataset consisted of 4328 time-series records with 127 feature
columns. Key parameters included ship kinematics (e.g., speed over
ground, draft, heading), environmental conditions (e.g., wind, waves),
and operating states. The model targeted fuel consumption as the out-
put. Four preprocessing steps were applied to the raw data to ensure
reliability:

Voyage segmentation: Retained only cruising-state data based on
ship speed thresholds, excluding non-steady phases to ensure the model
learns from representative operational conditions. Missing value re-
moval: Discarded incomplete records to ensure all variables were con-
sistent. Outlier filtering: Removed outliers in key numerical features
(e.g., draft, wind speed) to maintain the physical and engineering va-
lidity of the data. Normalization: Scaled all variables to the [0, 1] using
Min-Max normalization to improve model training stability and conver-
gence.

After that, a total of 1840 records were retained for model devel-
opment, as summarized in Table 1. Adhering to chronological order,
the dataset was partitioned into 80 % for training and 20 % for testing.
This temporal splitting strategy maintains the natural sequence of oper-
ational data and prevents information leakage, thereby improving the
validity of the performance evaluation.

To reduce feature redundancy and enhance model interpretabil-
ity, feature importance was ranked using a Random Forest algorithm.
As illustrated in Fig. 6, ship speed was identified as the most in-
fluential predictor, followed by water speed and drafts (MdDf: bow
drafts; MdDa: stern drafts). Meteorological factors such as wind direc-
tion demonstrated relatively lower importance. Features with negligi-
ble contributions-including rudder angle, air temperature (Ta), and air
pressure (Pa)-were subsequently removed from the final model. In this
study, we chose the top 9 features as the inputs.

Each training sample comprises a T-step time window, resulting in
an input tensor x € R™P, where D denotes the selected input dimen-
sion. The output y € R corresponds to the specific fuel consumption
(MeFoSail, kg/h) at the subsequent timestamp. During training, samples
are batched into tensors x € REXT*D for mini-batch processing. Algo-
rithm 1 details the data flow with four key stages: multi-scale subband
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Table 1
Representative subset of preprocessed data raw values before normalization.
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MdDf (m) MdDa (m) Wind Dir (*) Wind Speed (m/s) Water Speed (m/s)

Ship Speed (kn) Ship Dir (*) Wave Dir (") Wave Speed (cm) MeFoSail (kg/h) ...

Timestamp
2024-05-01 10:40 5.945 5.765 255.395 7.873 -0.124 11.010 80.399 141.9 161.1 303.0
2024-05-01 10:50 6.159 5.028 269.654 20.324 —-0.160 17.517 54.951 192.6 216.5 409.1
2024-05-31 11:40 6.000 5.416 54.400 37.179 -0.219 18.432 88.628 219.0 259.3 478.3
2024-05-31 11:50 6.000 5.464 42.871 40.031 —-0.164 18.338 92.061 223.1 263.3 486.4
Feature importance score g MeFoSail - Original Signal
0.0 0.1 0.2 0.3 04 0.5 : qu ‘
ship_speed ‘:: 300
2 0 250 500 750 . 1000 1250 1500 1750
water_speed Time Step
MdDF MeFoSail - ion A4 (Low-Frequency Trend)
£ 2000
MdDa T;— 15001
2
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= N
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Fig. 6. Feature importance ranking. H °J ‘
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Compressed Time Step (1 per 8 steps)
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decomposition, subband-wise GCN +iLSTM modeling, attention-based B UJ
H
fusion, and final prediction. Faol— = =

Algorithm 1 The proposed fuel prediction algorithm.
Require: Input sequence x € REXT*P edge index edge_index
Ensure: Predicted fuel consumption § € R5!

1: Step 1: Multi-scale wavelet decomposition _

2: (Y, {Y,(,”}f:l) < DWT1DForward(x) > Y, € RBxDxLo, Yg) € RBXDXL;

: Step 2: Subband-wise feature extraction using GCN +iLSTM
H <[] > Initialize subband output list

Yzeq « Transpose(Y;)
: hy < SubbandBranch_iLSTM(Y;"%, edge_index)
: Append h; to H
: for j =1to J do

(J.seq)
YH

09O N DDA W

— Transpose(Yg))

10: 1Y) « SubbandBranch_iLSTM(Y.**?, edge_index)
) %)

11: Append A} to H

12: end for

13: Step 3: Attention-based fusion
14: Hg,q < Stack(H)
15: s < Softmax(Hg,y - w + b)
J+1
16: zg < X0y s, H;

17: Step 4: Final prediction
18: y « tanh(Linear(zp))
19: return y

3.2. Model construction and configuration

3.2.1. Multi-scale feature decomposition

The original data is decomposed using discrete wavelet transform
with Daubechies-1 basis to extract features at multiple temporal scales.
A 4-level decomposition yields one approximation coefficient A, and
four detail coefficients D, D,, D3, and Dy, facilitating hierarchical mod-
eling across low- and high-frequency components. Fig. 7 presents the

40 60
Compressed Time Step (1 per 16 steps)

Fig. 7. Wavelet decomposition of fuel consumption sequence.
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Fig. 8. Mutual information matrix among selected features.

wavelet decomposition of fuel consumption, illustrating the amplitudes
of the approximate and detail components at different resolutions.

3.2.2. Residual sparse graph convolutional network

To capture heterogeneous structural dependencies among input fea-
tures, a ResGCN is established for each sub-band. The graph topology
for each sparse GCN is constructed via mutual information among key
features, quantifying their nonlinear correlations. As shown in Fig. 8,
mutual information values quantify pairwise feature dependencies; a
sparsity threshold 6 is applied to retain only significant connections,
generating sparse adjacency matrices as Fig. 9.

Each sub-band is processed independently by a ResGCN module,
aggregating feature interactions through the constructed graph topol-
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Fig. 9. Sparse adjacency matrix (6 = 0.5).

ogy. Residual connections facilitate gradient propagation across layers,
thereby improving model convergence and training stability. The Res-
GCN output is subsequently fed into the iLSTM module for prediction.

3.2.3. Ilstm and multi-scale fusion

To model temporal dynamics within each frequency sub-band,
we employ the iLSTM module as the core unit. Each sub-band-
representing either high-frequency detail components or the low-
frequency approximation-is processed independently by a parameter-
shared iLSTM branch. This modular architecture facilitates efficient par-
allel modeling of multi-scale temporal features while maintaining inter-
scale coherence.

The iLSTM incorporates three key enhancements: (1) causal convolu-
tions for local dependency capture, (2) block-diagonal projection matri-
ces for efficient feature transformation, and (3) multi-head matrix states
to augment representational capacity and training stability. Each branch
consists of three hierarchically stacked layers with preserved sequence
dimensionality.

Following ResGCN and iLSTM processing, sub-band outputs are
adaptively fused via a dynamic attention mechanism, as shown in
Fig. 10. At each timestep 7, the module autonomously adjusts sub-band
contributions a” based on contextual relevance, enabling synergistic in-
tegration of global trends and local variations. The fused representation
is then propagated through a fully connected layer for fuel consumption
prediction.

This ResGCN and iLSTM multi-branch framework simultaneously
captures spatial dependencies and multi-scale temporal patterns,
thereby improving prediction accuracy and robustness under complex
maritime operating regimes.

3.3. Model evaluation

To rigorously assess model accuracy and stability in ship fuel con-
sumption prediction, this study employs four established regression per-
formance metrics:

Coefficient of determination (R?) quantifies the proportion of vari-
ance explained by the model. Root mean square error (RMSE) measures
the standard deviation of prediction errors. Mean absolute error (MAE)
represents the average absolute deviation between predictions and true
values. Mean absolute percentage error (MAPE) evaluates relative pre-
diction accuracy as a percentage.

Z,I,\[:](yn - j}n)2

RP=1-
N = P2

(23)
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where y, denotes the actual value, §, represents the predicted value,
and j is the mean of the actual values.

4. Experimental results analysis

To validate the efficacy of our hybrid ResGCN and iLSTM framework
for ship fuel consumption prediction, we conduct systematic compar-
isons across three dimensions: model architectures, graph construction
strategies, and operational scenarios. The hyperparameters of the pro-
posed model are shown in Table 2.

The proposed MWD-ResGCN-iLSTM achieves state-of-the-art perfor-
mance across all test scenarios. Under the fully connected graph struc-
ture, its R? reaches 0.9667. Under 6 = 0.4, § = 0.5, and the empirical
graph structure, the R? values are 0.9583, 0.9623, and 0.9654, respec-
tively. Notably, MAPE remains below 5 % in all configurations, reaching
a minimum of 4.051 %.

These results demonstrate the model’s unique capacity to integrate
multi-scale feature decomposition, structural dependency encoding, and
temporal dynamics modeling, delivering superior robustness and adapt-
ability for complex spatiotemporal prediction tasks.

4.1. Comparative analysis of performance

Six benchmark models-BP, RBF, LSTM, sLSTM, mLSTM, and iLSTM-
were evaluated for ship fuel consumption prediction. Comparative re-
sults are presented in Fig. 11.

Traditional neural networks, for BP, R? is 0.8119 and MAPE is
18.17 %, for RBF, R? is 0.847 and MAPE is 11.54 %. The results demon-
strate limited capability in capturing temporal dependencies, resulting
in suboptimal predictive performance.

The LSTM baseline achieves moderate performance (R?=0.8508,
MAPE =10.21 %), while gated variants show significant improvements:
SLSTM reduces MAPE to 6.53 % through enhanced dynamic response,
and mLSTM exhibits improved robustness.

Notably, the proposed iLSTM outperforms all benchmarks with
R?2=0.9321, RMSE=0.0554, and MAPE=6.81%. This architecture
maintains superior training efficiency while demonstrating enhanced
feature modeling capacity and generalization ability.
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Table 2
Overall model hyperparameter settings.
Component Value/Setting Description
— Wavelet Decomposition —
Wavelet basis Daubechies-1 (db1) Used for multi-scale decomposition
Decomposition levels 2,4,6 Multi-group experiments with varying temporal resolution
— Graph Convolution Module —
Number of GCN layers 2 Each layer has 32 graph convolution kernels
Graph sparsity thresholds 0, 0.4, 0.5, empirical ~ Constructing different sparse adjacency matrices
Residual connection Enabled Improves stability and gradient flow
— iLSTM Sequence Model —
Input feature dimension 10 Number of features per time step
Input sequence length 10 Sliding window length for modeling
Number of iLSTM layers 3 Stacked temporal modeling blocks
Number of heads 2 Multi-head subspace decomposition
Head size 32 Dimensionality per head
Convolution type CausalConvlD Ensures temporal causality
Normalization GroupNorm Stabilizes multi-head processing
Activation GeLU Used in MLP projection layers
Up/Down Projection Enabled Applies dimension transformation with residuals
Parameter sharing Across subbands Reduces redundancy in multi-scale modeling
— Training Configuration —
Optimizer Adam Adaptive gradient optimization
Learning rate 0.01 Fixed learning rate without decay
Loss function MSE Used for regression target
Batch size 256 Samples per iteration
Training epochs 100 Maximum iterations with early stopping
- 20% 4.3. Impact of graph structure sparsity
1.04 18.1654% MAPE | 18%
09134 08935 00321 The sparsity of graph structures significantly influences model
wsio 0847 0.8508 - 16% performance. Table 3 compares prediction results across mutual
084 L 14% information thresholds (¢=0, 0.4, 0.5) and empirical graphs, while
Fig. 12 visualizes R?> and MAPE trends under varying sparsity condi-
o 11.5380% - 12% " tions.
.07 0/, ER) .
oy R L 10% % Critically, fully-connected graphs (6 =0) substantially degrade per-
9.2054% . 1 .
= formance: GCN-iLSTM exhibits negative R? (-0.015) and 41.42 % MAPE,
- 8% . . . . . . .
0.4 .. indicating that excessive connections introduce redundant noise that
6.5271% a e . .
L 6% disrupts feature extraction.
Conversely, increased sparsity enhances performance. Optimal re-
k4% .
0.2 ‘ sults emerge at #=0.5 and empirical graphs, where MWD-ResGCN-
2% iLSTM achieves peak R”>=0.9623 with MAPE =4.05 %, demonstrating
00 » superior stability and adaptability.
' BP RBF LSTM  sLSTM mLSTM iLSTM ’

Fig. 11. Comparative analysis of multi-model performance.

4.2. Effectiveness of residual structures in sparse GCN networks

Experimental results in Table 3 demonstrate the impact of resid-
ual structures on graph neural network performance. The ResGCN
architecture significantly mitigates the over-smoothing problem inher-
ent in standard GCNs while enhancing deep feature modeling capacity
and training stability.

For instance, the baseline iLSTM achieves R?> =0.9321. Notably, in-
tegrating standard GCN with iLSTM degrades performance across all
graph sparsity levels. At #=0 (fully-connected graph), R> drops below
0, indicating severe information degradation due to excessive message
passing.

In contrast, ResGCN-ILSTM maintains R> > 0.95 for most graph
configurations. Even in the empirical graph structure (R?=0.9398),
it significantly outperforms non-residual GCN variants by 8.6-15.2%.
This verifies residual connections’ critical role in preventing informa-
tion loss and enabling deep graph representation learning, particularly
in densely-connected scenarios.

These findings establish moderately sparse graphs (0 = 0.5 or empiri-
cal configurations) as the recommended construction strategy, optimally
balancing feature retention against redundancy suppression.

4.4. Effectiveness of multi-scale wavelet decomposition

To augment the model’s capacity for capturing multi-scale tempo-
ral dynamics, we introduce wavelet decomposition to dissect the orig-
inal feature sequence into distinct frequency sub-bands. This explicitly
represents low-frequency trends and high-frequency disturbances, en-
hancing feature structure. Table 4 compares prediction performance of
MWD-ResGCN variants across wavelet decomposition levels (2, 4, and
6 layers).

Experimental results demonstrate that with graph sparsity fixed at
0 = 0.5, MWD substantially enhances model accuracy and robustness.
The MWD-ResGCN-iLSTM achieves optimal performance under 4-layer
wavelet decomposition: R>=0.9623, MAPE=4.82 %, with significant
reductions in both RMSE and MAE. These improvements validate multi-
scale modeling’s efficacy in feature separation and representational en-
hancement.

Model performance exhibits significant sensitivity to wavelet decom-
position depth. At 2-layer decomposition, acceptable overall accuracy
is achieved, in which R*=0.9447 and MAPE=5.93 %, though high-
frequency dynamics capture remains limited. The 4-layer configuration
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Table 3
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Experimental results on test set under different graph structures (4-level wavelet decomposition).

Model 0 = 0 (Fully Connected) 0 = 0.4 (Sparse) 0 = 0.5 (Sparse) Empirical Graph Structure
R RMSE MAE  MAPE R RMSE MAE MAPE R RMSE MAE  MAPE R RMSE MAE  MAPE
GCN-LSTM 0.3299 0.1741 0.1437 32.8574% 0.3904 0.1660 0.1416 32.1103% 0.8429 0.0843 0.0500 11.6068% 0.5747 0.1387 0.1146 25.0961%
ResGCN-LSTM 0.8590 0.0798 0.0431 10.3115% 0.8615 0.0791 0.0425 10.3518% 0.8640 0.0784 0.0435 9.7658% 0.8726 0.0759 0.0429 10.2122%
MWD-ResGCN-LSTM  0.9305 0.0560 0.0328 6.3106% 0.9460 0.0494 0.0275 5.1340% 0.9410 0.0516 0.0318 5.8647% 0.9411 0.0516 0.0309 5.6625%
GCN-sLSTM 0.1785 0.1927 0.1557 35.5537% 0.5736 0.1389 0.1083 24.7676% 0.9285 0.0568 0.0344 7.3337% 0.7860 0.0984 0.0668 15.1356%
ResGCN-sLSTM 0.9604 0.0423 0.0224 4.3341% 0.9524 0.0464 0.0268 5.3079% 0.9470 0.0490 0.0251 5.2426% 0.9264 0.0577 0.0284 6.1297 %
MWD-ResGCN-sLSTM  0.9457 0.0496 0.0256 5.5016% 0.9489 0.0481 0.0261 4.8716% 0.9453 0.0497 0.0270 5.4500% 0.9448 0.0499 0.0276 5.8635%
GCN-mLSTM 0.2862 0.1797 0.1455 33.0243% 0.4563 0.1568 0.1294 29.2913% 0.9063 0.0651 0.0454 8.7317% 0.7013 0.1162 0.0874 19.6755%
ResGCN-mLSTM 0.9129 0.0627 0.0412 8.3155% 0.9273 0.0573 0.0376 7.2965% 0.9407 0.0518 0.0297 6.1628% 0.9219 0.0594 0.0394 7.7604 %
MWD-ResGCN-mLSTM 0.9136 0.0625 0.0368 7.1203% 0.9263 0.0577 0.0408 8.6264% 0.9565 0.0443 0.0275 5.3456% 0.9307 0.0560 0.0361 7.2159%
GCN-iLSTM —0.0150 0.2142 0.1753 41.4231% 0.0665 0.2055 0.1689 38.9025% 0.8839 0.0725 0.0525 10.3275% 0.7866 0.0982 0.0659 14.5200%
ResGCN-iLSTM 0.9665 0.0389 0.0206 3.9097% 0.9585 0.0433 0.0231 4.5092% 0.9522 0.0465 0.0242 4.8192% 0.9398 0.0522 0.0303 6.4527 %
MWD-ResGCN-iLSTM  0.9667 0.0388 0.0241 4.7356% 0.9583 0.0434 0.0287 5.7426% 0.9623 0.0413 0.0207 4.0510% 0.9654 0.0396 0.0232 4.3688 %
- 50 -
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Fig. 12. Performance comparison of models under different graph structures.
Table 4
Performance comparison on test set under different wavelet decomposition levels.
Model 2-level 4-level 6-level
R? RMSE  MAE MAPE R? RMSE  MAE MAPE R? RMSE  MAE MAPE
MWD-ResGCN-LSTM 0.9040 0.0659 0.0381 7.8167 % 0.9410 0.0516 0.0318 5.8647 % 0.9234 0.0589 0.0316 5.9081 %
MWD-ResGCN-sLSTM 0.9429 0.0508 0.0282 5.4963 % 0.9453 0.0497 0.0270 5.4500 % 0.9346 0.0544 0.0292 6.0441 %
MWD-ResGCN-mLSTM ~ 0.9167  0.0614  0.0396  7.9798%  0.9565  0.0443  0.0275 5.3456%  0.9003  0.0672  0.0429  8.5878%
MWD-ResGCN-iLSTM 0.9447 0.0500 0.0293 5.9318% 0.9623 0.0413 0.0207 4.0510 % 0.9366 0.0535 0.0256 5.5568 %
yields optimal performance, in which R?=0.9623 and MAPE =4.82 %, Table 5
demonstrating peak multi-scale modeling efficacy. Conversely, 6-layer Prediction performance under noise and abnormal conditions.
decomposition degrades performance with MAPE=6.21 %, indicating Condition MAE RMSE  Med. Shift
noise intri ion from excessivi mposition that disr fi I
oise .t oduction from excessive decomposition that disrupts feature No disturbance 00207 00413  —0.0014
extraction. GN (std=1%) 0.0233  0.0431  —0.0017
Optimal decomposition depth is therefore critical for maximizing GN (std=3%) 0.0371  0.0604  —0.0010
MWD’s time-series modeling quality. The 4-layer benchmark optimally GN (std=5%) 0.0525  0.0738  -0.0027
balances time-frequency resolution while preventing spectral leakage GN (std=10%) 0.0903 01227 -0.0027
Abnormal (x 1.3 wind + speed) 0.0407 0.0657 —0.0025

from over-decomposition.
4.5. Robustness analysis

To evaluate the proposed model’s robustness and predictive stability
under non-ideal conditions, we conducted two perturbation tests: Gaus-
sian noise injection and abnormal operating condition simulation. The
model’s performance was evaluated using the testing dataset, and the
results are presented in Table 5.

Experimental results in Table 5 and residual distributions in Fig. 13
demonstrate the model’s sustained high accuracy and stability across

disturbances. Even under maximum perturbation (10 % GN), MAE and
RMSE rose marginally to 0.0903 and 0.1227 respectively, with me-
dian residuals confined to +0.003. For abnormal conditions, robustness
approached the 5% noise scenario (MAE=0.0407, RMSE =0.0657),
demonstrating notable tolerance to disturbances in key variables like
wind and ship speed.

In summary, the proposed model demonstrates excellent robust-
ness when faced with input disturbances and abnormal values in key
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Fig. 13. Residual distribution under different perturbation conditions.

features, supporting its applicability in real-world ship fuel consump-
tion prediction under complex maritime environments.

5. Conclusion

This study proposes a novel multi-branch model, termed MWD-
ResGCN-iLSTM, for ship fuel consumption prediction. The model in-
tegrates Multi-scale Wavelet Decomposition, a Residual Sparse Graph
Convolutional Network, and an improved Long Short-Term Memory net-
work. Key technical innovations are systematically developed and vali-
dated through three principal dimensions:

Structural optimization: A mutual information-based weighted
graph structure captures implicit feature correlations. Experimental
analysis of varying sparsity levels and empirical graphs demonstrates
that moderate sparsity effectively mitigates information redundancy
and over-smoothing, enhancing feature propagation efficiency. Resid-
ual connections in GCNs are employed to mitigate over-smoothing by
retaining input features across layers, thereby enhancing representation
capacity and training stability.

Sequence modeling: Building upon the traditional LSTM, an en-
hanced iLSTM incorporating residual mapping is proposed. This archi-
tecture achieves an optimal balance between nonlinear modeling capa-
bility and computational efficiency while maintaining high prediction
accuracy, serving as the core temporal modeling unit.

Feature enhancement: The innovative integration of multi-scale
wavelet decomposition decomposes raw signals into distinct frequency
subbands. Independent multi-branch pathways model these subbands,
followed by attention-based fusion, substantially strengthening the
model’s ability to capture complex multi-scale temporal patterns.

Extensive experiments confirm that the proposed MWD-ResGCN-
iLSTM model achieves state-of-the-art performance across all evaluated
graph configurations, attaining a peak R?> of 0.9667 and a minimal
MAPE of 4.0510 %. The model exhibits exceptional generalization ca-
pability and robustness, while maintaining a favorable balance between
structural complexity and training efficiency. These results underscore
its significant potential for practical deployment in multivariate time
series forecasting applications.

Though the proposed model exhibits robust empirical performance,
we recognize its inherent limitations. It lacks full generalizability across
ship types and operating scenarios. Rather than seeking universal solu-
tions, this work deciphers interactions between navigational conditions,
environmental factors, and their synergistic effects on fuel efficiency.
Future work will expand datasets to include diverse ship types and ex-
plore cross-scenario transfer learning, to enhance practical applicability
and generalization capacity in maritime settings.
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