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 a b s t r a c t

Accurate prediction of ship fuel consumption is essential for maritime energy optimization and emission reduc-
tion. Due to the complex interactions among navigation-related factors such as ship speed, wind, draft, waves, 
and currents, ship fuel consumption exhibits strong nonlinear, non-stationary, and multi-scale characteristics, 
posing challenges to conventional prediction methods. To address this, a hybrid prediction framework is pro-
posed, integrating multi-scale wavelet decomposition (MWD), a residual sparse graph convolutional network 
(ResGCN), and an improved long short-term memory network (iLSTM). Key features are selected using random 
forest, and a residual sparse graph based on mutual information is constructed to capture nonlinear inter-feature 
dependencies while enhancing information propagation and mitigating over-smoothing. The iLSTM combines the 
strengths of structural and memory-augmented LSTM variants, improving spatiotemporal modeling and compu-
tational efficiency. MWD decomposes the input into frequency sub-bands to separate trends from fluctuations, 
with a dynamic attention mechanism enhances cross-scale feature fusion. Experimental results show the proposed 
model achieves a peak 𝑅2 of 0.9667 and a MAPE of 4.051%, demonstrating exceptional accuracy, robustness in 
ship fuel consumption forecasting.

1.  Introduction

Amid tightening IMO decarbonization mandates and global carbon 
neutrality pledges, ship fuel optimization has become a make-or-break 
factor for achieving Poseidon Principles compliance. Accurate predic-
tion of fuel consumption offers vital decision support for reducing oper-
ating costs (Zhou et al., 2023), advancing energy conservation and emis-
sion reduction (Xiao et al., 2025), achieving carbon neutrality goals, and 
optimizing routes (Hu et al., 2022).

In particular, ship fuel consumption is influenced by factors such as 
speed, wind, waves, currents, and load, which exhibit non-stationarity, 
nonlinearity, and multi-scale spatiotemporal complexity. Current ship 
fuel consumption prediction methods are broadly categorized as: white 
box models (WBMs), black box models (BBMs), and gray box models 
(GBMs) (Fan et al., 2022).

WBMs build on ship propulsion physics, which ensures strong 
physical interpretability (Tillig and Ringsberg, 2019; Orihara and 
Tsujimoto, 2018). However, WBMs require high-precision parameter
measurements and accurate modeling in complex conditions, making 
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dynamic adjustments and reliable predictions challenging (Vinayak 
et al., 2021). BBMs use historical data exclusively, applying statistical or 
machine learning methods, which makes them ideal for data-rich prac-
tical applications (Yan et al., 2021). GBMs merge physical mechanisms 
with data-driven approaches, integrating domain knowledge while us-
ing data to calibrate and supplement parameters (Chen et al., 2019). 
This hybrid methodology excels in modeling complex navigation sce-
narios (Odendaal et al., 2023). Moreover, their data-driven compo-
nents suffer from data constraints, while parameter calibration adds
complexity.

Consequently, recent studies increasingly shift toward deep learning-
offering powerful nonlinear modeling in high-dimensional spaces-with 
initial efforts primarily using feedforward neural networks. Moreira 
(Moreira et al., 2021) applied a backpropagation (BP) network to model 
fuel consumption relative to ship speed under varying sea conditions, 
achieving good accuracy. Yan (Yan et al., 2020) employed radial ba-
sis function (RBF) networks, known for their faster convergence and
superior generalization compared to traditional BP models. However, 
both BP and RBF networks suffer from limitations, including sensitivity 
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to initialization, poor scalability with high-dimensional inputs, and an 
inability to effectively capture sequential dependencies.

To address these constraints, researchers increasingly adopt recur-
rent architectures. Zhang (Zhang et al., 2024) introduced an attention-
enhanced bidirectional LSTM model, effectively integrating multi-
source data to achieve superior performance over standard LSTMs in 
fuel consumption prediction. Concurrently, Wang (Wang et al., 2023) 
developed a GA-LSTM model, utilizing genetic algorithms to optimize 
hyperparameters and enhance prediction accuracy under dynamic op-
erating conditions.

Despite excelling at temporal dependencies, recurrent networks of-
ten assume feature independence and lack explicit modeling of struc-
tural correlations (Chen et al., 2024). Yet ship parameters, such as speed, 
wind, draft, and wave dynamics, exhibit strong nonlinear interdepen-
dencies, necessitating joint modeling of temporal sequences and pair-
wise feature interactions for accurate bunker fuel forecasting (Li et al., 
2023).

To advance temporal dynamics modeling, studies enhance neu-
ral networks’ sequential learning capability. Zhao (Zhao and Zhao, 
2025) pioneered DeepONet-based coupled models employing branch-
trunk decomposition to jointly learn multi-dimensional motion sig-
nals for ultra-short-term ship prediction. Mao (Mao et al., 2025) de-
veloped the TF-Informer framework, integrating temporal convolu-
tional networks, frequency enhanced channel attention, and informer 
modules, to capture both transient variations and voyage-scale de-
pendencies. In parallel, recent studies incorporated signal decompo-
sition techniques to address nonlinearity and nonstationarity in mar-
itime time-series forecasting. Zhang et al. (2022) applied wavelet 
transform with hybrid statistical-neural models, while Hou et al. 
(2024) demonstrated that ensemble empirical mode decomposition 
(EEMD) combined with LSTM can effectively exploit multi-scale compo-
nents for improved predictive accuracy. These innovations demonstrate 
multiscale attention architectures’ efficacy for maritime time-series
modeling.

While such improvements enhance temporal learning, the structural 
dependencies among features remain underexplored. Graph neural net-
works (GNNs), particularly graph convolutional networks (GCNs), pro-
vide a natural solution by representing features as nodes and learning 
their relationships through message passing. However, most GCN-based 
approaches rely on static or fully connected graphs, failing to capture 
the inherent sparsity and evolving nature of feature interactions. This 
often results in redundant information propagation and oversmoothed 
node representations (Qureshi et al., 2023). On the other hand, standard 
LSTM networks face limited representational capacity and lack paral-
lelism, restricting their efficiency in capturing long-range dependencies 
in complex temporal data.

To overcome the limitations of existing models in capturing the non-
linear, dynamic, and structurally interdependent characteristics of ship 
fuel consumption, this paper proposes a unified multi-branch predic-
tion framework. The model integrates multi-scale wavelet decomposi-
tion, a sparse residual graph convolutional network, and an improved 
long short-term memory network, with a dynamic attention mechanism 
enhancing cross-scale feature fusion. Experimental results show that the 
proposed model achieves a peak 𝑅2 of 0.9667 and a MAPE of 4.051%, 
demonstrating superior accuracy and robustness under complex mar-
itime conditions.

2.  Methods

We propose a multi-branch ship fuel consumption prediction model 
integrating multi-scale wavelet decomposition, a sparse residual graph 
convolutional network, an improved long short-term memory network, 
and an attention mechanism. The model captures the complex interac-
tions among multiple feature variables and their temporal dependencies. 
The overall process of the prediction method is shown in Fig. 1.

2.1.  Wavelet decomposition

To enhance multi-scale temporal modeling, this paper employs 𝑛-
layer wavelet decomposition on the original input sequence 𝑥(𝑡). This 
decomposition hierarchically separates the sequence into sub-sequences 
at distinct frequency levels, capturing both the overall trend and local 
disturbances. The resultant representation comprises a low-frequency 
approximation 𝐴𝑛(𝑡) and multiple high-frequency detail components 
𝐷1(𝑡), 𝐷2(𝑡),… , 𝐷𝑛(𝑡): 

𝑥(𝑡) = 𝐴𝑛(𝑡) +
𝑛
∑

𝑗=1
𝐷𝑗 (𝑡) (1)

where the low-frequency approximate component 𝐴𝑛(𝑡) describes the 
slowly varying trend of the time series, while the high-frequency de-
tail component 𝐷𝑗 (𝑡) captures rapid fluctuations and abrupt changes at 
different scales. This decomposition effectively breaks down the orig-
inal signal into a set of temporally structured, multi-scale features, 
yielding a more detailed and structured representation for subsequent
modeling.

2.2.  Residual sparse graph convolutional network

2.2.1.  Graph convolutional network
The GCN is a deep learning method specifically designed for graph-

structured data, effectively modeling complex node relationships in non-
Euclidean space (Bhatti et al., 2023). GCN performs feature aggrega-
tion and node representation updates through a propagation mechanism 
based on the graph adjacency matrix, capturing structural semantics be-
tween nodes.

For a given undirected graph 𝐺 = (𝑉 ,𝐸), where 𝑉  represents the 
node set and 𝐸 represents the edge set, each node 𝑣𝑖 ∈ 𝑉  in the graph 
has an input feature vector 𝐱𝑖. GCN normalizes the adjacency matrix: 
𝐴̂ = 𝐷̃−1∕2𝐴̃𝐷̃−1∕2 (2)

where 𝐴̃ = 𝐴 + 𝐼 is the adjacency matrix with self-loops, and 𝐷̃ is the de-
gree matrix of 𝐴̃. Perform hierarchical propagation and transformation 
on the input feature matrix 𝑋: 
𝐻 (𝑙+1) = 𝜎

(

𝐴̂𝐻 (𝑙)𝑊 (𝑙)) (3)

here, 𝐻 (𝑙) is the node feature matrix of the 𝑙-th layer, with the ini-
tial layer 𝐻 (0) = 𝑋 being the input feature matrix; 𝑊 (𝑙) is the learn-
able weight matrix of the 𝑙-th layer; and 𝜎(⋅) represents the activation 
function (such as ReLU). This formula indicates that the feature up-
date of each node is the weighted average of its own and neighbor-
ing node features, thereby achieving the fusion and expression of local
information.

Although GCNs can expand a node’s receptive field by stacking 
multiple layers, increasing network depth often faces issues like over-
smoothing and gradient decay. These problems lead to representational 
homogeneity among nodes and performance degradation (Qi et al., 
2021). To mitigate this issue, this paper adopts ResGCN architecture. 
This structure incorporates residual connections after each graph con-
volutional layer. Specifically, the input features from the previous layer 
are added to the current convolution output, expressed as: 
𝐻 (𝑙+1) = 𝜎

(

𝐴̂𝐻 (𝑙)𝑊 (𝑙)) +𝐻 (𝑙) (4)

Each layer incorporates residual connections, facilitating cross-layer 
feature transfer. This mechanism enhances the expressive power and 
training efficiency of deep GCNs. By preserving low-level features during 
training, residual connections strengthen the network’s representational 
capacity and training stability, leading to enhanced performance when 
stacking multiple GCN layers.

2.2.2.  Sparse graph convolutional network
In ship fuel consumption prediction, high-dimensional and redun-

dant features can significantly impair model performance. Certain in-
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Fig. 1. Overall process of prediction method.

put variables contribute minimally and may even introduce noise, po-
tentially leading to overfitting and computational inefficiency (Zhang 
et al., 2024). To mitigate these issues, we implement a two-step strat-
egy for constructing an informative yet sparse feature graph: (1) feature 
screening based on random forest importance, and (2) sparse graph con-
struction leveraging mutual information (see Fig. 2).

Random forest, a widely adopted ensemble learning method, com-
prises multiple decision trees trained on bootstrapped samples and ran-
dom feature subsets. It exhibits strong resistance to overfitting and ef-
fectively estimates feature relevance (Wen et al., 2022). The importance 
of a feature 𝑓𝑖 is quantified by the aggregate reduction in mean squared 
error (MSE) it contributes across all splits and trees. Specifically, for a 
split node utilizing feature 𝑓𝑖, the MSE reduction is computed as follows:

Δ𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑝𝑎𝑟𝑒𝑛𝑡 −
( 𝑁𝑙𝑒𝑓 𝑡
𝑁𝑝𝑎𝑟𝑒𝑛𝑡

⋅𝑀𝑆𝐸𝑙𝑒𝑓 𝑡

+ 𝑁𝑟𝑖𝑔ℎ𝑡
𝑁𝑝𝑎𝑟𝑒𝑛𝑡

⋅𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡
)

(5)

where 𝑀𝑆𝐸𝑝𝑎𝑟𝑒𝑛𝑡 is the MSE of the parent node before splitting. 
𝑀𝑆𝐸𝑙𝑒𝑓 𝑡 and 𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡 are the MSE of the left and right child nodes 
after splitting, respectively. 𝑁𝑝𝑎𝑟𝑒𝑛𝑡, 𝑁𝑙𝑒𝑓 𝑡, and 𝑁𝑟𝑖𝑔ℎ𝑡 are the number of 
samples of the parent node and the left and right child nodes, respec-
tively.

By aggregating the 𝑀𝑆𝐸 reductions for each feature across all trees, 
we derive a quantitative importance score. This screening step effec-
tively filters out irrelevant or marginally relevant features, thereby en-
hancing the efficiency and performance of subsequent modeling stages.

Following this feature screening, we construct a sparse graph based 
on the statistical dependencies among the selected key features. Moving 
beyond assumptions of predefined or fully-connected relationships, we 
utilize mutual information to quantify the dependency strength between 
any pair of features. Given that the feature variables are discrete, the 
mutual information between two discrete random variables 𝑓𝑖 and 𝑓𝑗 is 

Fig. 2. Feature screening and sparse graph construction.

defined as:

MI(𝑓𝑖, 𝑓𝑗 ) =
∑

𝑥∈

∑

𝑦∈
𝑝𝑓𝑖 ,𝑓𝑗 (𝑥, 𝑦) log

(

𝑝𝑓𝑖 ,𝑓𝑗 (𝑥, 𝑦)

𝑝𝑓𝑖 (𝑥), 𝑝𝑓𝑗 (𝑦)

)

(6)

where:  and  denote the value spaces of 𝑓𝑖 and 𝑓𝑗 ; 𝑝𝑓𝑖 ,𝑓𝑗 (𝑥, 𝑦) is the 
empirical joint probability of 𝑓𝑖 = 𝑥 and 𝑓𝑗 = 𝑦; 𝑝𝑓𝑖 (𝑥) and 𝑝𝑓𝑗 (𝑦) are the 
marginal probabilities of 𝑓𝑖 and 𝑓𝑗 , respectively.

Following computation of the mutual information matrix 𝑀 ∈ ℝ𝑛×𝑛, 
a sparsification procedure is performed using threshold 𝜃. This produces 
a sparse, data-driven graph topology that selectively retains salient fea-
ture dependencies while suppressing noisy or redundant connections. 
The resultant adjacency matrix 𝐴 is constructed as follows:

𝐴𝑖𝑗 =
{

MI(𝑓𝑖, 𝑓𝑗 ), if MI(𝑓𝑖, 𝑓𝑗 ) > 𝜃
0, otherwise

(7)
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Fig. 3. Structure of LSTM, sLSTM, and mLSTM.

2.3.  Improved long short-term memory network

2.3.1.  Long short-term memory network
To address the vanishing gradient problem inherent in traditional 

RNNs for long-sequence modeling, LSTM incorporates three gating 
mechanisms-forget gate, input gate, and output gate (Hochreiter and 
Schmidhuber, 1997). The gating operations are formally defined as fol-
lows:

{𝑖𝑡, 𝑓𝑡, 𝑜𝑡} = 𝜎
(

{𝑖𝑡, 𝑓𝑡, 𝑜̃𝑡}
)

= 𝜎
(

𝑊 ⊤
(𝑖,𝑓 ,𝑜)𝑥𝑡 + 𝑅(𝑖,𝑓 ,𝑜)ℎ𝑡−1 + 𝑏(𝑖,𝑓 ,𝑜)

)

(8)

where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 represent the activation values of the input gate, forget 
gate and output gate respectively. ̃𝑖𝑡, 𝑓𝑡, 𝑜̃𝑡 are their corresponding input 
signals. 𝑊 (𝑖, 𝑓 , 𝑜)⊤, 𝑅(𝑖, 𝑓 , 𝑜) and 𝑏(𝑖, 𝑓 , 𝑜) represent the weight matrix, 
recurrent weight matrix and bias term respectively. ℎ𝑡−1 is the hidden 
state of the previous moment. 𝜎 is the sigmoid function.

The update of memory cell 𝑐𝑡 is given by:
𝑧𝑡 = 𝜙(𝑧̃𝑡) = 𝜙(𝑊 ⊤

𝑧 𝑥𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧) (9)

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑧𝑡 (10)

where 𝜙 represents the activation function tanh. 𝑐𝑡−1 is the memory state 
of the previous moment. 𝑓𝑡 and 𝑖𝑡 control the forgetting of old informa-
tion and the introduction of new information.

The output of the hidden state is modulated by the memory unit: 
ℎ𝑡 = 𝑜𝑡ℎ̃𝑡 = 𝑜𝑡 tanh(𝑐𝑡) (11)

While LSTM effectively model long-range sequences, they exhibit 
inherent limitations including finite storage capacity, difficulty in re-
vising past decisions, and constrained parallelism due to memory mix-
ing effects (Beck et al., 2024). To overcome these constraints, the ex-
tended LSTM (xLSTM) architecture was developed. This framework in-
tegrates two enhanced variants: scalar-state LSTM (sLSTM) and matrix-
state LSTM (mLSTM), which respectively augment storage precision and 
capacity.

Specifically, sLSTM incorporates an exponential gating mechanism 
derived from conventional gating structures, replacing the Sigmoid ac-
tivation function:
{𝑖𝑡, 𝑓𝑡} = exp

(

𝑊 ⊤
(𝑖,𝑓 )𝑥𝑡 + 𝑅(𝑖,𝑓 )ℎ𝑡−1 + 𝑏(𝑖,𝑓 )

)

(12)

𝑛𝑡 = 𝑓𝑡 ⋅ 𝑛𝑡−1 + 𝑖𝑡 (13)

Through state normalization, sLSTM achieves more precise regula-
tion of information retention/forgetting, enhances historical state cor-
rection capability, and improves numerical stability. As show in Fig. 3.

mLSTM expands the memory unit from a scalar to a matrix, 𝑐𝑡 ∈
ℝ𝑑×𝑑 . This matrix representation enables storage of multiple state vec-
tors, substantially enhancing model representational capacity and oper-
ational flexibility. The gating computations for mLSTM are formalized 
as follows:
{𝑖𝑡, 𝑓𝑡} = exp

(

{𝑖𝑡, 𝑓𝑡}
)

= exp
(

𝑊 ⊤
(𝑖,𝑓 )𝑥𝑡 + 𝑏(𝑖,𝑓 )

)

(14)

𝑛𝑡 = 𝑓𝑡 ⋅ 𝑛𝑡−1 + 𝑖𝑡 ⋅ 𝑘𝑡 (15)

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑣𝑡 ⋅ 𝑘
⊤
𝑡 (16)

where 𝑣𝑡 and 𝑘𝑡 represent the value vector and key vector. 𝑓𝑡 and 𝑖𝑡
correspond to the weight decay rate and learning rate, reflecting the 
effective integration of the fast weight storage mechanism (Schlag et al., 
2021).

To stabilize state reading, mLSTM incorporates max-normalization, 
with its hidden state formally defined as:

𝑞𝑡 = 𝑊𝑞𝑥𝑡 + 𝑏𝑝, 𝑘𝑡 =
1

√

𝑑
𝑊𝑘𝑥𝑡 + 𝑏𝑘, 𝑣𝑡 = 𝑊𝑣𝑥𝑡 + 𝑏𝑣 (17)

ℎ𝑡 = 𝑜𝑡 ⊙ ℎ̃𝑡, ℎ̃𝑡 =
𝑐𝑡𝑞𝑡

max
(

|

|

𝑛⊤𝑡 𝑞𝑡||, 1
) (18)

The output gate subsequently modulates the final cell state to pro-
duce the layer output: 
𝑜𝑡 = 𝜎(𝑜̃𝑡), 𝑜̃𝑡 = 𝑊𝑜𝑥𝑡 + 𝑏𝑜 (19)

Relative to LSTM, mLSTM eliminates inter-unit hidden state connec-
tions. This architectural modification mitigates sequence dependencies 
induced by memory mixing effects, thereby enabling efficient parallel 
computation.

2.3.2.  Improved long short-term memory network
To address the architectural imbalance within the xLSTM frame-

work, where sLSTM provides high accuracy but suffers from poor par-
allelism, while mLSTM supports parallelism but lacks temporal model-
ing precision, we propose iLSTM. The iLSTM retains mLSTM’s parallel-
friendly backbone but incorporates targeted architectural modifications 
to enhance both representational expressiveness and training efficiency.

Unlike sLSTM, which relies on sequential memory updates and 
parallelism-hindering multi-gated block-diagonal transformations, iL-
STM avoids serial bottlenecks by leveraging mLSTM’s matrix-based 
memory mixing.

Compared to mLSTM, the proposed iLSTM introduces several archi-
tectural refinements to improve expressiveness while maintaining effi-
ciency. First, we remove the learnable skip connection. This simplifies 
the information pathway, reduces redundancy, and facilitates more sta-
ble optimization. Second, to better encode short-term temporal depen-
dencies, we apply a kernel-size-4 causal convolution prior to projection. 
This ensures autoregressive consistency while enhancing local context 
modeling. For projection, we retain block-diagonal transformations for 
generating queries and keys, but adopt a lightweight up-projection strat-
egy for values. This reduces computational overhead compared to mL-
STM’s convolution-based value processing. Finally, we replace the orig-
inal output gate and skip fusion mechanism with a gated multi-layer 
perceptron (MLP). This MLP, comprising up-projection, GeLU activa-
tion, and down-projection, offers superior non-linear modeling capacity 
at minimal additional cost. Fig. 4 illustrates the complete iLSTM archi-
tecture.

2.4.  Dynamic weighting attention mechanism

To leverage multi-scale subsequence information from wavelet de-
composition, we introduce a dynamic attention mechanism after sub-
band modeling for adaptive multi-frequency feature fusion. Unlike static 
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Fig. 4. iLSTM architecture.

Fig. 5. Dynamic weighting attention mechanism.

weighting approaches, this mechanism’s key innovation lies in contex-
tual awareness-dynamically modulating sub-band weights in the final 
output according to the input state at each prediction time step, as il-
lustrated in Fig. 5.

Formally, given an original time series decomposed into 𝑛 frequency-
specific sub-bands (e.g., high-frequency components 𝐷1, 𝐷2,… , 𝐷𝑘 and 
low-frequency approximation 𝐴𝑛), the attention module computes im-
portance weights 𝛼(𝑡)𝑘  at 𝑡 based on each sub-band model’s output repre-
sentation. These weights determine the contribution of each sub-band 
to the aggregated prediction.

For the 𝑘th subband prediction output ℎ(𝑡)𝑘  at a given time step 𝑡, its 
attention score 𝑠(𝑡)𝑘  is calculated by:

𝑠(𝑡)𝑘 = 𝐰⊤𝐡(𝑡)𝑘 + 𝑏 (20)

All scores {𝑠(𝑡)𝑘 }𝑛𝑘=1 are normalized by the softmax layer to obtain the 
attention weight 𝛼(𝑡)𝑘 :

𝛼(𝑡)𝑘 = 𝑒𝑠
(𝑡)
𝑘

∑𝑁
𝑛=0 𝑒

𝑠(𝑡)𝑛
(21)

Finally, the weighted fusion of multi-subband prediction outputs can 
be expressed as:

𝑦(𝑡)𝑘 =
𝑛
∑

𝑘=1
𝛼(𝑡)𝑘 ⋅ 𝐡(𝑡)𝑘 , 𝑠.𝑡.

𝑛
∑

𝑘=1
𝛼(𝑡)𝑘 = 1 (22)

where ℎ(𝑡)𝑘  represents the predicted output representation of the 𝑘th sub-
band at time step 𝑡. 𝛼(𝑡)𝑘  is the weight coefficient dynamically generated 
by the attention network.

This mechanism enhances model interpretability: analysis of tem-
poral weight distributions reveals whether the model prioritizes
high-frequency disturbances or low-frequency trend information at spe-
cific timesteps.

3.  Experimental design and model validation

To evaluate the proposed prediction model, this section details the 
experimental methodology encompassing data preparation, feature se-
lection, model configuration, and evaluation metrics.

3.1.  Data preparation

This study utilizes voyage data recorder (VDR) datasets collected at 
10-min intervals from a RoPax ferry operating fixed routes in May 2024. 
The RoPax ferry features a length of 189.5m, a width of 26.5m, and a 
draft of 6.5m. With a maximum speed of 23 knots, the ship has a total 
tonnage of 32,729 tonnes.

The dataset consisted of 4328 time-series records with 127 feature 
columns. Key parameters included ship kinematics (e.g., speed over 
ground, draft, heading), environmental conditions (e.g., wind, waves), 
and operating states. The model targeted fuel consumption as the out-
put. Four preprocessing steps were applied to the raw data to ensure 
reliability:

Voyage segmentation: Retained only cruising-state data based on 
ship speed thresholds, excluding non-steady phases to ensure the model 
learns from representative operational conditions. Missing value re-
moval: Discarded incomplete records to ensure all variables were con-
sistent. Outlier filtering: Removed outliers in key numerical features 
(e.g., draft, wind speed) to maintain the physical and engineering va-
lidity of the data. Normalization: Scaled all variables to the [0, 1] using 
Min-Max normalization to improve model training stability and conver-
gence.

After that, a total of 1840 records were retained for model devel-
opment, as summarized in Table 1. Adhering to chronological order, 
the dataset was partitioned into 80% for training and 20% for testing. 
This temporal splitting strategy maintains the natural sequence of oper-
ational data and prevents information leakage, thereby improving the 
validity of the performance evaluation.

To reduce feature redundancy and enhance model interpretabil-
ity, feature importance was ranked using a Random Forest algorithm. 
As illustrated in Fig. 6, ship speed was identified as the most in-
fluential predictor, followed by water speed and drafts (MdDf : bow 
drafts; MdDa: stern drafts). Meteorological factors such as wind direc-
tion demonstrated relatively lower importance. Features with negligi-
ble contributions-including rudder angle, air temperature (Ta), and air 
pressure (Pa)-were subsequently removed from the final model. In this 
study, we chose the top 9 features as the inputs.

Each training sample comprises a 𝑇 -step time window, resulting in 
an input tensor 𝑥 ∈ ℝ𝑇×𝐷, where 𝐷 denotes the selected input dimen-
sion. The output 𝑦 ∈ ℝ corresponds to the specific fuel consumption 
(MeFoSail, kg/h) at the subsequent timestamp. During training, samples 
are batched into tensors 𝑥 ∈ ℝ𝐵×𝑇×𝐷 for mini-batch processing. Algo-
rithm 1 details the data flow with four key stages: multi-scale subband 

Ocean Engineering 343 (2026) 123191 

5 



W. Zhong et al.

Table 1 
Representative subset of preprocessed data raw values before normalization.
 Timestamp  MdDf (m)  MdDa (m)  Wind Dir (°)  Wind Speed (m/s)  Water Speed (m/s)  Ship Speed (kn)  Ship Dir (°)  Wave Dir (°)  Wave Speed (cm)  MeFoSail (kg/h)  …
 2024-05-01 10:40  5.945  5.765  255.395  7.873 −0.124  11.010  80.399  141.9  161.1  303.0  …
 2024-05-01 10:50  6.159  5.028  269.654  20.324 −0.160  17.517  54.951  192.6  216.5  409.1  …
 …  …  …  …  …  …  …  …  …  …  …  …
 2024-05-31 11:40  6.000  5.416  54.400  37.179 −0.219  18.432  88.628  219.0  259.3  478.3  …
 2024-05-31 11:50  6.000  5.464  42.871  40.031 −0.164  18.338  92.061  223.1  263.3  486.4  …

Fig. 6. Feature importance ranking.

decomposition, subband-wise GCN+iLSTM modeling, attention-based 
fusion, and final prediction. 

Algorithm 1 The proposed fuel prediction algorithm.
Require: Input sequence 𝑥 ∈ ℝ𝐵×𝑇×𝐷, edge index edge_index
Ensure: Predicted fuel consumption 𝑦̂ ∈ ℝ𝐵×1

1: Step 1: Multi-scale wavelet decomposition
2: (𝑌𝐿, {𝑌

(𝑗)
𝐻 }𝐽𝑗=1) ← DWT1DForward(𝑥) ⊳ 𝑌𝐿 ∈ ℝ𝐵×𝐷×𝐿0 , 𝑌 (𝑗)

𝐻 ∈ ℝ𝐵×𝐷×𝐿𝑗

3: Step 2: Subband-wise feature extraction using GCN+iLSTM
4: 𝐻 ← [ ] ⊳ Initialize subband output list
5: 𝑌 seq𝐿 ← Transpose(𝑌𝐿)
6: ℎ𝐿 ← SubbandBranch_iLSTM(𝑌 seq𝐿 , edge_index)
7: Append ℎ𝐿 to 𝐻
8: for 𝑗 = 1 to 𝐽 do
9:  𝑌 (𝑗,seq)

𝐻 ← Transpose(𝑌 (𝑗)
𝐻 )

10:  ℎ(𝑗)𝐻 ← SubbandBranch_iLSTM(𝑌 (𝑗,seq)
𝐻 , edge_index)

11:  Append ℎ(𝑗)𝐻  to 𝐻
12: end for

13: Step 3: Attention-based fusion
14: 𝐻stack ← Stack(𝐻)
15: 𝑠 ← Softmax(𝐻stack ⋅𝑤 + 𝑏)
16: 𝐳𝐵 ←

∑𝐽+1
𝑗=1 𝑠𝑗 ⋅𝐻𝑗

17: Step 4: Final prediction
18: 𝑦̂ ← tanh(Linear(𝐳𝐵))
19: return 𝑦̂

3.2.  Model construction and configuration

3.2.1.  Multi-scale feature decomposition
The original data is decomposed using discrete wavelet transform 

with Daubechies-1 basis to extract features at multiple temporal scales. 
A 4-level decomposition yields one approximation coefficient 𝐴4 and 
four detail coefficients 𝐷1, 𝐷2, 𝐷3, and 𝐷4, facilitating hierarchical mod-
eling across low- and high-frequency components. Fig. 7 presents the 

Fig. 7. Wavelet decomposition of fuel consumption sequence.

Fig. 8. Mutual information matrix among selected features.

wavelet decomposition of fuel consumption, illustrating the amplitudes 
of the approximate and detail components at different resolutions.

3.2.2.  Residual sparse graph convolutional network
To capture heterogeneous structural dependencies among input fea-

tures, a ResGCN is established for each sub-band. The graph topology 
for each sparse GCN is constructed via mutual information among key 
features, quantifying their nonlinear correlations. As shown in Fig. 8, 
mutual information values quantify pairwise feature dependencies; a 
sparsity threshold 𝜃 is applied to retain only significant connections, 
generating sparse adjacency matrices as Fig. 9.

Each sub-band is processed independently by a ResGCN module, 
aggregating feature interactions through the constructed graph topol-
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Fig. 9. Sparse adjacency matrix (𝜃 = 0.5).

ogy. Residual connections facilitate gradient propagation across layers, 
thereby improving model convergence and training stability. The Res-
GCN output is subsequently fed into the iLSTM module for prediction.

3.2.3.  Ilstm and multi-scale fusion
To model temporal dynamics within each frequency sub-band, 

we employ the iLSTM module as the core unit. Each sub-band-
representing either high-frequency detail components or the low-
frequency approximation-is processed independently by a parameter-
shared iLSTM branch. This modular architecture facilitates efficient par-
allel modeling of multi-scale temporal features while maintaining inter-
scale coherence.

The iLSTM incorporates three key enhancements: (1) causal convolu-
tions for local dependency capture, (2) block-diagonal projection matri-
ces for efficient feature transformation, and (3) multi-head matrix states 
to augment representational capacity and training stability. Each branch 
consists of three hierarchically stacked layers with preserved sequence 
dimensionality.

Following ResGCN and iLSTM processing, sub-band outputs are 
adaptively fused via a dynamic attention mechanism, as shown in 
Fig. 10. At each timestep 𝑡, the module autonomously adjusts sub-band 
contributions 𝛼(𝑡) based on contextual relevance, enabling synergistic in-
tegration of global trends and local variations. The fused representation 
is then propagated through a fully connected layer for fuel consumption 
prediction.

This ResGCN and iLSTM multi-branch framework simultaneously 
captures spatial dependencies and multi-scale temporal patterns, 
thereby improving prediction accuracy and robustness under complex 
maritime operating regimes.

3.3.  Model evaluation

To rigorously assess model accuracy and stability in ship fuel con-
sumption prediction, this study employs four established regression per-
formance metrics:

Coefficient of determination (𝑅2) quantifies the proportion of vari-
ance explained by the model. Root mean square error (RMSE) measures 
the standard deviation of prediction errors. Mean absolute error (MAE) 
represents the average absolute deviation between predictions and true 
values. Mean absolute percentage error (MAPE) evaluates relative pre-
diction accuracy as a percentage.

𝑅2 = 1 −
∑𝑁

𝑛=1(𝑦𝑛 − 𝑦̂𝑛)2
∑𝑁

𝑛=1(𝑦𝑛 − 𝑦̄)2
(23)

Fig. 10. Multi-subband weighted fusion model.

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑦̂𝑛)2 (24)

MAE = 1
𝑁

𝑁
∑

𝑛=1
|𝑦𝑛 − 𝑦̂𝑛| (25)

MAPE = 100%
𝑁

𝑁
∑

𝑛=1

|

|

|

|

𝑦𝑛 − 𝑦̂𝑛
𝑦𝑛

|

|

|

|

(26)

where 𝑦𝑛 denotes the actual value, 𝑦̂𝑛 represents the predicted value, 
and 𝑦̄ is the mean of the actual values.

4.  Experimental results analysis

To validate the efficacy of our hybrid ResGCN and iLSTM framework 
for ship fuel consumption prediction, we conduct systematic compar-
isons across three dimensions: model architectures, graph construction 
strategies, and operational scenarios. The hyperparameters of the pro-
posed model are shown in Table 2.

The proposed MWD-ResGCN-iLSTM achieves state-of-the-art perfor-
mance across all test scenarios. Under the fully connected graph struc-
ture, its 𝑅2 reaches 0.9667. Under 𝜃 = 0.4, 𝜃 = 0.5, and the empirical 
graph structure, the 𝑅2 values are 0.9583, 0.9623, and 0.9654, respec-
tively. Notably, MAPE remains below 5% in all configurations, reaching 
a minimum of 4.051%.

These results demonstrate the model’s unique capacity to integrate 
multi-scale feature decomposition, structural dependency encoding, and 
temporal dynamics modeling, delivering superior robustness and adapt-
ability for complex spatiotemporal prediction tasks.

4.1.  Comparative analysis of performance

Six benchmark models-BP, RBF, LSTM, sLSTM, mLSTM, and iLSTM-
were evaluated for ship fuel consumption prediction. Comparative re-
sults are presented in Fig. 11.

Traditional neural networks, for BP, 𝑅2 is 0.8119 and MAPE is 
18.17%, for RBF, 𝑅2 is 0.847 and MAPE is 11.54%. The results demon-
strate limited capability in capturing temporal dependencies, resulting 
in suboptimal predictive performance.

The LSTM baseline achieves moderate performance (𝑅2=0.8508, 
MAPE=10.21%), while gated variants show significant improvements: 
sLSTM reduces MAPE to 6.53% through enhanced dynamic response, 
and mLSTM exhibits improved robustness.

Notably, the proposed iLSTM outperforms all benchmarks with 
𝑅2=0.9321, RMSE=0.0554, and MAPE=6.81%. This architecture 
maintains superior training efficiency while demonstrating enhanced 
feature modeling capacity and generalization ability.
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Table 2 
Overall model hyperparameter settings.
 Component  Value/Setting  Description
 — Wavelet Decomposition —
 Wavelet basis  Daubechies-1 (db1)  Used for multi-scale decomposition
 Decomposition levels  2, 4, 6  Multi-group experiments with varying temporal resolution
 — Graph Convolution Module —
 Number of GCN layers  2  Each layer has 32 graph convolution kernels
 Graph sparsity thresholds  0, 0.4, 0.5, empirical  Constructing different sparse adjacency matrices
 Residual connection  Enabled  Improves stability and gradient flow
 — iLSTM Sequence Model —
 Input feature dimension  10  Number of features per time step
 Input sequence length  10  Sliding window length for modeling
 Number of iLSTM layers  3  Stacked temporal modeling blocks
 Number of heads  2  Multi-head subspace decomposition
 Head size  32  Dimensionality per head
 Convolution type  CausalConv1D  Ensures temporal causality
 Normalization  GroupNorm  Stabilizes multi-head processing
 Activation  GeLU  Used in MLP projection layers
 Up/Down Projection  Enabled  Applies dimension transformation with residuals
 Parameter sharing  Across subbands  Reduces redundancy in multi-scale modeling
 — Training Configuration —
 Optimizer  Adam  Adaptive gradient optimization
 Learning rate  0.01  Fixed learning rate without decay
 Loss function  MSE  Used for regression target
 Batch size  256  Samples per iteration
 Training epochs  100  Maximum iterations with early stopping

Fig. 11. Comparative analysis of multi-model performance.

4.2.  Effectiveness of residual structures in sparse GCN networks

Experimental results in Table 3 demonstrate the impact of resid-
ual structures on graph neural network performance. The ResGCN
architecture significantly mitigates the over-smoothing problem inher-
ent in standard GCNs while enhancing deep feature modeling capacity 
and training stability.

For instance, the baseline iLSTM achieves 𝑅2=0.9321. Notably, in-
tegrating standard GCN with iLSTM degrades performance across all 
graph sparsity levels. At 𝜃=0 (fully-connected graph), 𝑅2 drops below 
0, indicating severe information degradation due to excessive message 
passing.

In contrast, ResGCN-iLSTM maintains 𝑅2 > 0.95 for most graph 
configurations. Even in the empirical graph structure (𝑅2=0.9398), 
it significantly outperforms non-residual GCN variants by 8.6–15.2%. 
This verifies residual connections’ critical role in preventing informa-
tion loss and enabling deep graph representation learning, particularly 
in densely-connected scenarios.

4.3.  Impact of graph structure sparsity

The sparsity of graph structures significantly influences model 
performance. Table 3 compares prediction results across mutual
information thresholds (𝜃=0, 0.4, 0.5) and empirical graphs, while 
Fig. 12 visualizes 𝑅2 and MAPE trends under varying sparsity condi-
tions.

Critically, fully-connected graphs (𝜃=0) substantially degrade per-
formance: GCN-iLSTM exhibits negative 𝑅2 (-0.015) and 41.42% MAPE, 
indicating that excessive connections introduce redundant noise that 
disrupts feature extraction.

Conversely, increased sparsity enhances performance. Optimal re-
sults emerge at 𝜃=0.5 and empirical graphs, where MWD-ResGCN-
iLSTM achieves peak 𝑅2=0.9623 with MAPE=4.05%, demonstrating 
superior stability and adaptability.

These findings establish moderately sparse graphs (𝜃=0.5 or empiri-
cal configurations) as the recommended construction strategy, optimally 
balancing feature retention against redundancy suppression.

4.4.  Effectiveness of multi-scale wavelet decomposition

To augment the model’s capacity for capturing multi-scale tempo-
ral dynamics, we introduce wavelet decomposition to dissect the orig-
inal feature sequence into distinct frequency sub-bands. This explicitly 
represents low-frequency trends and high-frequency disturbances, en-
hancing feature structure. Table 4 compares prediction performance of 
MWD-ResGCN variants across wavelet decomposition levels (2, 4, and 
6 layers).

Experimental results demonstrate that with graph sparsity fixed at 
𝜃 = 0.5, MWD substantially enhances model accuracy and robustness. 
The MWD-ResGCN-iLSTM achieves optimal performance under 4-layer 
wavelet decomposition: 𝑅2=0.9623, MAPE=4.82%, with significant 
reductions in both RMSE and MAE. These improvements validate multi-
scale modeling’s efficacy in feature separation and representational en-
hancement.

Model performance exhibits significant sensitivity to wavelet decom-
position depth. At 2-layer decomposition, acceptable overall accuracy 
is achieved, in which 𝑅2=0.9447 and MAPE=5.93%, though high-
frequency dynamics capture remains limited. The 4-layer configuration 
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Table 3 
Experimental results on test set under different graph structures (4-level wavelet decomposition).
 Model 𝜃 = 0 (Fully Connected) 𝜃 = 0.4 (Sparse) 𝜃 = 0.5 (Sparse)  Empirical Graph Structure

𝑅2  RMSE  MAE  MAPE 𝑅2  RMSE  MAE  MAPE 𝑅2  RMSE  MAE  MAPE 𝑅2  RMSE  MAE  MAPE
 GCN-LSTM  0.3299  0.1741  0.1437  32.8574%  0.3904  0.1660  0.1416  32.1103%  0.8429  0.0843  0.0500  11.6068%  0.5747  0.1387  0.1146  25.0961%
 ResGCN-LSTM  0.8590  0.0798  0.0431  10.3115%  0.8615  0.0791  0.0425  10.3518%  0.8640  0.0784  0.0435  9.7658%  0.8726  0.0759  0.0429  10.2122%
 MWD-ResGCN-LSTM  0.9305  0.0560  0.0328  6.3106%  0.9460  0.0494  0.0275  5.1340%  0.9410  0.0516  0.0318  5.8647%  0.9411  0.0516  0.0309  5.6625%
 GCN-sLSTM  0.1785  0.1927  0.1557  35.5537%  0.5736  0.1389  0.1083  24.7676%  0.9285  0.0568  0.0344  7.3337%  0.7860  0.0984  0.0668  15.1356%
 ResGCN-sLSTM  0.9604  0.0423  0.0224  4.3341%  0.9524  0.0464  0.0268  5.3079%  0.9470  0.0490  0.0251  5.2426%  0.9264  0.0577  0.0284  6.1297%
 MWD-ResGCN-sLSTM  0.9457  0.0496  0.0256  5.5016%  0.9489  0.0481  0.0261  4.8716%  0.9453  0.0497  0.0270  5.4500%  0.9448  0.0499  0.0276  5.8635%
 GCN-mLSTM  0.2862  0.1797  0.1455  33.0243%  0.4563  0.1568  0.1294  29.2913%  0.9063  0.0651  0.0454  8.7317%  0.7013  0.1162  0.0874  19.6755%
 ResGCN-mLSTM  0.9129  0.0627  0.0412  8.3155%  0.9273  0.0573  0.0376  7.2965%  0.9407  0.0518  0.0297  6.1628%  0.9219  0.0594  0.0394  7.7604%
 MWD-ResGCN-mLSTM  0.9136  0.0625  0.0368  7.1203%  0.9263  0.0577  0.0408  8.6264%  0.9565  0.0443  0.0275  5.3456%  0.9307  0.0560  0.0361  7.2159%
 GCN-iLSTM −0.0150  0.2142  0.1753  41.4231%  0.0665  0.2055  0.1689  38.9025%  0.8839  0.0725  0.0525  10.3275%  0.7866  0.0982  0.0659  14.5200%
 ResGCN-iLSTM  0.9665  0.0389  0.0206  3.9097%  0.9585  0.0433  0.0231  4.5092%  0.9522  0.0465  0.0242  4.8192%  0.9398  0.0522  0.0303  6.4527%
 MWD-ResGCN-iLSTM  0.9667  0.0388  0.0241  4.7356%  0.9583  0.0434  0.0287  5.7426%  0.9623  0.0413  0.0207  4.0510%  0.9654  0.0396  0.0232  4.3688%

Fig. 12. Performance comparison of models under different graph structures.

Table 4 
Performance comparison on test set under different wavelet decomposition levels.
 Model  2-level  4-level  6-level

𝑅2  RMSE  MAE  MAPE 𝑅2  RMSE  MAE  MAPE 𝑅2  RMSE  MAE  MAPE
 MWD-ResGCN-LSTM  0.9040  0.0659  0.0381  7.8167%  0.9410  0.0516  0.0318  5.8647%  0.9234  0.0589  0.0316  5.9081%
 MWD-ResGCN-sLSTM  0.9429  0.0508  0.0282  5.4963%  0.9453  0.0497  0.0270  5.4500%  0.9346  0.0544  0.0292  6.0441%
 MWD-ResGCN-mLSTM  0.9167  0.0614  0.0396  7.9798%  0.9565  0.0443  0.0275  5.3456%  0.9003  0.0672  0.0429  8.5878%
 MWD-ResGCN-iLSTM  0.9447  0.0500  0.0293  5.9318%  0.9623  0.0413  0.0207  4.0510%  0.9366  0.0535  0.0256  5.5568%

yields optimal performance, in which 𝑅2=0.9623 and MAPE=4.82%, 
demonstrating peak multi-scale modeling efficacy. Conversely, 6-layer 
decomposition degrades performance with MAPE=6.21%, indicating 
noise introduction from excessive decomposition that disrupts feature 
extraction.

Optimal decomposition depth is therefore critical for maximizing 
MWD’s time-series modeling quality. The 4-layer benchmark optimally 
balances time-frequency resolution while preventing spectral leakage 
from over-decomposition.

4.5.  Robustness analysis

To evaluate the proposed model’s robustness and predictive stability 
under non-ideal conditions, we conducted two perturbation tests: Gaus-
sian noise injection and abnormal operating condition simulation. The 
model’s performance was evaluated using the testing dataset, and the 
results are presented in Table 5.

Experimental results in Table 5 and residual distributions in Fig. 13 
demonstrate the model’s sustained high accuracy and stability across 

Table 5 
Prediction performance under noise and abnormal conditions.
 Condition  MAE  RMSE  Med. Shift
 No disturbance  0.0207  0.0413 −0.0014
 GN (std=1%)  0.0233  0.0431 −0.0017
 GN (std=3%)  0.0371  0.0604 −0.0010
 GN (std=5%)  0.0525  0.0738 −0.0027
 GN (std=10%)  0.0903  0.1227 −0.0027
 Abnormal (×1.3 wind+speed)  0.0407  0.0657 −0.0025

disturbances. Even under maximum perturbation (10% GN), MAE and 
RMSE rose marginally to 0.0903 and 0.1227 respectively, with me-
dian residuals confined to ±0.003. For abnormal conditions, robustness 
approached the 5% noise scenario (MAE=0.0407, RMSE=0.0657), 
demonstrating notable tolerance to disturbances in key variables like 
wind and ship speed.

In summary, the proposed model demonstrates excellent robust-
ness when faced with input disturbances and abnormal values in key
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Fig. 13. Residual distribution under different perturbation conditions.
features, supporting its applicability in real-world ship fuel consump-
tion prediction under complex maritime environments.

5.  Conclusion

This study proposes a novel multi-branch model, termed MWD-
ResGCN-iLSTM, for ship fuel consumption prediction. The model in-
tegrates Multi-scale Wavelet Decomposition, a Residual Sparse Graph 
Convolutional Network, and an improved Long Short-Term Memory net-
work. Key technical innovations are systematically developed and vali-
dated through three principal dimensions:

Structural optimization: A mutual information-based weighted 
graph structure captures implicit feature correlations. Experimental 
analysis of varying sparsity levels and empirical graphs demonstrates 
that moderate sparsity effectively mitigates information redundancy 
and over-smoothing, enhancing feature propagation efficiency. Resid-
ual connections in GCNs are employed to mitigate over-smoothing by 
retaining input features across layers, thereby enhancing representation 
capacity and training stability.

Sequence modeling: Building upon the traditional LSTM, an en-
hanced iLSTM incorporating residual mapping is proposed. This archi-
tecture achieves an optimal balance between nonlinear modeling capa-
bility and computational efficiency while maintaining high prediction 
accuracy, serving as the core temporal modeling unit.

Feature enhancement: The innovative integration of multi-scale 
wavelet decomposition decomposes raw signals into distinct frequency 
subbands. Independent multi-branch pathways model these subbands, 
followed by attention-based fusion, substantially strengthening the 
model’s ability to capture complex multi-scale temporal patterns.

Extensive experiments confirm that the proposed MWD-ResGCN-
iLSTM model achieves state-of-the-art performance across all evaluated 
graph configurations, attaining a peak 𝑅2 of 0.9667 and a minimal 
MAPE of 4.0510%. The model exhibits exceptional generalization ca-
pability and robustness, while maintaining a favorable balance between 
structural complexity and training efficiency. These results underscore 
its significant potential for practical deployment in multivariate time 
series forecasting applications.

Though the proposed model exhibits robust empirical performance, 
we recognize its inherent limitations. It lacks full generalizability across 
ship types and operating scenarios. Rather than seeking universal solu-
tions, this work deciphers interactions between navigational conditions, 
environmental factors, and their synergistic effects on fuel efficiency. 
Future work will expand datasets to include diverse ship types and ex-
plore cross-scenario transfer learning, to enhance practical applicability 
and generalization capacity in maritime settings.
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