材料科学与工程学院
通讯地址:镇江市丹徒新区长晖路666号
个人邮箱:difeng1984@just.edu.cn
邮政编码:212100
办公地点:材料科学与工程学院425室
传真:
冯迪,工学博士,副教授,硕士研究生导师,江苏科技大学优秀教师,优秀共产党员,金属材料工程系副主任。江苏省“双创计划”科技副总,江苏省第16、17批科技镇长团成员,镇江市青年金山英才,热处理工程师,技术经纪人。致力于金属材料的强韧化机理,塑性变形工艺,热处理工艺以及新型成形成性技术的研究和工程化应用。主持国家自然科学基金、江苏省自然科学基金、江苏省高校基金、镇江市重点研发计划以及多项校企合作项目。获江苏省材料学会科学进步奖(特等奖)2项,发表SCI/EI论文30余篇,出版专著2部。
社会兼职:中国机械工程学会热处理分会青年工作委员会委员,中国稀土学会稀土轻合金专业委员会委员,中国热处理行业协会虚拟仿真技术委员会委员,江苏省材料学会副秘书长/标准化技术委员会委员,苏州市先进金属材料产业创新协会专家库专家,《稀有金属材料与工程》中/英文版、《材料研究学报》、《材料开发与应用》青年编委,Metals客座编辑。
1. 航空航天用高性能铝合金的基础研究及工程化技术;
2. 高合金成分铝合金的喷射成形及相关基础研究;
3. 金属材料塑性成形工艺及有限元模拟。
车用高性能铝合金卡钳活塞关键制备技术的研究与推广
轻质高强耐磨卡钳活塞的关键制备技术研发(GY2021020)
超高强耐蚀航空铝合金挤压件的关键制备研发(GY2021003)
基于非等温相变行为的AlZnMgCu合金厚板组织性能均匀性的积分回归调控机理 51801082 主持
非等温条件下航空AlZnMgCu合金厚板回归过程中的“积分效应”研究 BK20160560 主持
积分效应对7A55铝合金非等温回归行为的影响研究 16KJB430010 主持
航空用铝合金及其厚板的非等温析出强韧化机理 主持
铝合金空心型材焊合质量的影响因素及焊合机理研究 主持
学术论文列表
第一和通讯
[35] Feng Di(通讯作者). The Effect of Heat Ageing on the Microstructure and Properties of Spray-Deposited AlZnMgCu Alloy Extruded Plates[J]. Materials, 2024, 17(15).(DOI:10.3390/ma17153706. WOS: 001287059800001)
[34] Feng Di(第一作者).The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review[J]. Journal of Central South University, 2023, 30: 2833-2866. (DOI: https://doi.org/10.1007/s11771-023-5439-9. WOS:001098684500001)
[33] Feng Di(第一作者). Aluminum Alloys and Aluminum-Based Matrix Composites[J]. Metals, 2023, 13(11):1870 (DOI: 10.3390/met13111870, WOS:001114583300001)
[32] Feng Di(通讯作者). The precipitates and properties evolution behaviors of AlZnMgCu alloy during the retrogression process with slow heating[J]. Journal of materials research and technology, 2023, 26: 3544-3557. (http://doi.org/10.1016/j.jmrt.2023.08.122, WOS:001107113300001)
[31] Feng Di(第一作者). Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy during Hot Deformation[J]. Metals, 2022, 12(11):1982 (SCI. https://doi.org/10.3390/met12111982, WOS:000895210600001)
[30] Feng Di(通讯作者). Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate[J]. Journal of Central South University, 2022, 29(3): 960-972.(SCI, DOI 10.1007/s11771-022-4960-6, WOS:000780982300018)
[29] 冯迪(第一作者). 喷射沉积过共晶AlSiCuMg合金的时效行为及力学性能[J].中国有色金属学报, 2023,33(5):1399-1412(EI, DOI: 10.11817/j.ysxb.1004.0609.2022-43537)
[28] 冯迪(通讯作者). 喷射成形AlSiCuMg合金的热变形组织及再结晶行为[J].金属学报, 2022, 58(7): 932-943(SCI, DOI 10.11900/0412.1961.2021.00329, WOS:000816121700009)
[27] 冯迪(第一作者). 喷射成形过共晶AlSiCuMg合金的固溶行为[J].金属学报, 2022, 2002, 58(9):1129-1141(SCI, DOI 10.11900/0412.1961.2021.00079, WOS:000841981600004)
[26] 冯迪(第一作者). 喷射成形7055铝合金初生相在形变前预热处理中的演变行为[J].稀有金属材料与工程, 2020, 49(12): 4253-4262(SCI, WOS:000607448600033)
[25] 冯迪(通讯作者). 7055铝合金的非等温双级时效行为[J].金属学报, 2020, 56(11): 1497-1507(SCI,WOS:000584345200006)
[24] 冯迪(通讯作者). 非等温时效对7B50铝合金组织及性能的影响[J].金属学报, 2020, 56(9): 1255-1265(SCI,WOS:000576758600008)
[23] 冯迪(通讯作者). 喷射成形AlSi25Cu4Mg 耐磨合金的本构方程及热加工图[J].材料导报, 2020, 34(5): 10120-10126
[22] Di Feng(第一作者). Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy[J]. Metals and Materials International, 2018, 24(1): 195-204.(SCI,WOS:000419534500024)
[21] D. Feng(第一作者). Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature[J]. Materials Science & Engineering A, 2014, 608: 63-72.(SCI,WOS:000338404800009)
[20] D. Feng(第一作者).The effect of pre-ageing temperature and retrogression heating rate on the microstructureand properties of AA7055 [J]. Materials Science and Engineering: A, 2013, 588: 34-42.(SCI,WOS:000328176900006)
[19] D. Feng(第一作者).Non-isothermal “retrogression and re-ageing” treatment schedule for AA7055 thick plate[J]. Materials and Design, 2014, 60: 208-217.(SCI,WOS:000336668000026)
[18] DiFENG(第一作者).Rate controlling Mechanisms in Hot Deformation of 7A55 aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 24-35.(SCI,WOS:000330225400004)
[17] DiFENG(第一作者).Non-isothermal retrogression kinetics for grain boundary precipitate of 7A55 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2014, 24: 2122-2129.(SCI,WOS:000340841700018)
[16] DiFENG(通讯作者).Oxides distribution and microstructure in welding zones from porthole die extrusion[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 765-772.(SCI,WOS:000324003100027)
[15] DiFeng(第一作者).Constitutive Equation and Dynamic Softening Behavior of 7A55Aluminum Alloy during Compression at Elevated Temperatures[J]. Materials Science Forum, 2017, 898: 291-299.(EI)
[14] 冯迪(第一作者).晶粒尺寸对新型高强铝合金热变形行为的影响[J]. 稀有金属材料与工程, 2016, 46(8): 2104-2110.(SCI,WOS:000382410400034)
[13] 冯迪(第一作者).非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-109.(SCI,WOS:000418584100012)
[12] 冯迪(第一作者).7A55铝合金-RRA态厚板组织和性能及其均匀性的多因素影响[J]. 中国有色金属学报, 2019,29(6): 1150-1160.(EI)
[11] 冯迪(第一作者).非等温回归再时效对7055 铝合金中厚板的厚向组织及性均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010.(EI)
[10] 冯迪(第一作者).预时效温度及回归加热速率对7150 铝合金显微组织性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181.(EI)
[9] 冯迪(第一作者).预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150.(EI)
[8] 冯迪(第一作者).7A55 铝合金厚板的微观组织和性能不均匀性[J]. 中南大学学报(自然科学版), 2015, 46(8): 2824-2830.(EI)
[7] 冯迪(通讯作者). 基于Archard 理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报(自然科学版), 2009, 40(5): 1245-1251.(EI)
[6] 冯迪(第一作者).铝合金空心型材挤压焊合问题的研究进展[J]. 材料导报, 2013, 27(10): 6-9.(EI)
[5] 冯迪(第一作者).双级时效对Al-8Zn-2Mg-2Cu合金组织及性能的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(5): 642-650.(CSCD)
[4] 冯迪(通讯作者).铝合金方管分流焊合挤压过程的有限元分析[J]. 中国机械工程, 2009, 20(24): 2393-2397.(CSCD)
[3] 冯迪(通讯作者).5083 铝合金法兰盘锻造过程的数值模拟[J]. 热加工工艺, 2008, 37(13): 53-58.(CSCD)
[2] 冯迪(第一作者).H13 钢热变形行为的数学模型[J]. 钢铁, 2010, 45(5): 52-56.(CSCD)
[1] 冯迪(第一作者).H13 钢制分流模低周疲劳寿命的预测方法及其应用[J]. 钢铁研究学报, 2010, 22(9): 43-47.(CSCD)
合作发表
[13] Jun Zhou, Hengcheng Liao, Hongmei Chen, Di Feng, Weijun Zhu. Realizing strength-ductility combination of Fe3.5Ni3.5Cr2MnAl0.7 high-entropy alloy via coherent dual-phase structure[J]. Vacuum, 2023, 215: 112297.
[12] Puli Cao, Guilan Xie, Chengbo Li, Daibo Zhu, Di Feng, Bo Xiao, Cai Zhao. Investigation of the Quenching Sensitivity of the Mechanical and Corrosion Properties of 7475 Aluminum Alloy[J]. Metals, 2023, 13, 1656. https://doi.org/10.3390/met13101656.
[11] Lin GaoYong, Xiao MengQiong, Feng Di, et al. Microstructural and mechanical properties of ZA10 alloy tubes and their weld seams prepared by Conform continuous extrusion[J]. Rare Metals, 2020, 39(6): 707-715.
[10] Qianghao Zang, Di Feng, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling[J]. Journal of Alloys and Compounds, 2020,1847: 56481
[9] Gaoyong Lin, Xin Tan, Di Feng, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al–13Si–7.5Cu–1Mg alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 1013-1020
[8] Gaoyong LIN, Kun LI, Di FENG, et al. Effects of La−Ce addition on microstructure and mechanical properties of Al−18Si−4Cu−0.5Mg alloy[J]. Transaction Nonferrous Metals Society of China, 2019, 29: 1592−1600.
[7] Gaoyong Lin, Weiyuan Song, Di Feng, et al. Study of microstructure and mechanical property heterogeneity throughout the wall thickness of high strength aluminum alloy thick-wall pipe[J]. Journal of Materials Research, 2019, 34(15): 2735-2745.
[6] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy[J].Journal of Materials Engineering and Performance, 2020,29: 8414–8421
[5] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Dynamic Compression Behavior of a Mg–Gd‑Based Alloy at Elevated Temperature[J]. Metals and Materials International, 2019.
[4] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Effects of Gd, Y Content on the Microstructure and Mechanical Properties of Mg-Gd-Y-Nd-Zr Alloy[J]. Metals,2018, 8, 790
[3] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effects of thermomechanical processing on the microstructure, texture and mechanical properties of a Mg-Gd-based alloy[J]. Materials Science & Engineering A, 2019 ,759:172-180.
[2] LIU Jian, LIN Gao-yong, FENG Di, et al. Effects of process parameters and die geometry on longitudinal weldsquality in aluminum porthole die extrusion process[J]. Journal of Central South University of Technology, 2010, 17: 688−696
[1] Tang Chang Ping, Yang Liu, Feng Di, et al. Investigation on Microstructure and Mechanical Properties of a Mg-Gd-Y-Zr Alloy Plate[J]. Materials and Manufacturing Processes, 2012, 27(6): 609-613.
教改论文列表
[1] 冯迪.工程教育认证背景下的材料科学基础双语教学改革与实践[J].
中国现代教育装备, 2018, 283: 88-91.
[2] 冯迪.基于“产出导向”的金属材料工程专业实践教学体系构建[J].
中国现代教育装备, 2023, 423: 147-149.
[3] 冯迪.基于“成果导向”的金属材料工程本科拔尖人才培养机制研究[J].
中国现代教育装备, 2024, 425: 182-186.
专/编著列表
1. 冯迪《高强耐蚀铝合金厚板的均匀制备技术》 2019.12
2. 冯迪《Aluminum Alloys and Aluminum-Based Matrix Composites》2023.12
车用高性能铝合金卡钳活塞关键制备技术的研究与推广
轻质高强耐磨卡钳活塞的关键制备技术研发(GY2021020)
超高强耐蚀航空铝合金挤压件的关键制备研发(GY2021003)
基于非等温相变行为的AlZnMgCu合金厚板组织性能均匀性的积分回归调控机理 51801082 主持
非等温条件下航空AlZnMgCu合金厚板回归过程中的“积分效应”研究 BK20160560 主持
积分效应对7A55铝合金非等温回归行为的影响研究 16KJB430010 主持
航空用铝合金及其厚板的非等温析出强韧化机理 主持
铝合金空心型材焊合质量的影响因素及焊合机理研究 主持
学术论文列表
第一和通讯
[35] Feng Di(通讯作者). The Effect of Heat Ageing on the Microstructure and Properties of Spray-Deposited AlZnMgCu Alloy Extruded Plates[J]. Materials, 2024, 17(15).(DOI:10.3390/ma17153706. WOS: 001287059800001)
[34] Feng Di(第一作者).The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review[J]. Journal of Central South University, 2023, 30: 2833-2866. (DOI: https://doi.org/10.1007/s11771-023-5439-9. WOS:001098684500001)
[33] Feng Di(第一作者). Aluminum Alloys and Aluminum-Based Matrix Composites[J]. Metals, 2023, 13(11):1870 (DOI: 10.3390/met13111870, WOS:001114583300001)
[32] Feng Di(通讯作者). The precipitates and properties evolution behaviors of AlZnMgCu alloy during the retrogression process with slow heating[J]. Journal of materials research and technology, 2023, 26: 3544-3557. (http://doi.org/10.1016/j.jmrt.2023.08.122, WOS:001107113300001)
[31] Feng Di(第一作者). Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy during Hot Deformation[J]. Metals, 2022, 12(11):1982 (SCI. https://doi.org/10.3390/met12111982, WOS:000895210600001)
[30] Feng Di(通讯作者). Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate[J]. Journal of Central South University, 2022, 29(3): 960-972.(SCI, DOI 10.1007/s11771-022-4960-6, WOS:000780982300018)
[29] 冯迪(第一作者). 喷射沉积过共晶AlSiCuMg合金的时效行为及力学性能[J].中国有色金属学报, 2023,33(5):1399-1412(EI, DOI: 10.11817/j.ysxb.1004.0609.2022-43537)
[28] 冯迪(通讯作者). 喷射成形AlSiCuMg合金的热变形组织及再结晶行为[J].金属学报, 2022, 58(7): 932-943(SCI, DOI 10.11900/0412.1961.2021.00329, WOS:000816121700009)
[27] 冯迪(第一作者). 喷射成形过共晶AlSiCuMg合金的固溶行为[J].金属学报, 2022, 2002, 58(9):1129-1141(SCI, DOI 10.11900/0412.1961.2021.00079, WOS:000841981600004)
[26] 冯迪(第一作者). 喷射成形7055铝合金初生相在形变前预热处理中的演变行为[J].稀有金属材料与工程, 2020, 49(12): 4253-4262(SCI, WOS:000607448600033)
[25] 冯迪(通讯作者). 7055铝合金的非等温双级时效行为[J].金属学报, 2020, 56(11): 1497-1507(SCI,WOS:000584345200006)
[24] 冯迪(通讯作者). 非等温时效对7B50铝合金组织及性能的影响[J].金属学报, 2020, 56(9): 1255-1265(SCI,WOS:000576758600008)
[23] 冯迪(通讯作者). 喷射成形AlSi25Cu4Mg 耐磨合金的本构方程及热加工图[J].材料导报, 2020, 34(5): 10120-10126
[22] Di Feng(第一作者). Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy[J]. Metals and Materials International, 2018, 24(1): 195-204.(SCI,WOS:000419534500024)
[21] D. Feng(第一作者). Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature[J]. Materials Science & Engineering A, 2014, 608: 63-72.(SCI,WOS:000338404800009)
[20] D. Feng(第一作者).The effect of pre-ageing temperature and retrogression heating rate on the microstructureand properties of AA7055 [J]. Materials Science and Engineering: A, 2013, 588: 34-42.(SCI,WOS:000328176900006)
[19] D. Feng(第一作者).Non-isothermal “retrogression and re-ageing” treatment schedule for AA7055 thick plate[J]. Materials and Design, 2014, 60: 208-217.(SCI,WOS:000336668000026)
[18] DiFENG(第一作者).Rate controlling Mechanisms in Hot Deformation of 7A55 aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 24-35.(SCI,WOS:000330225400004)
[17] DiFENG(第一作者).Non-isothermal retrogression kinetics for grain boundary precipitate of 7A55 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2014, 24: 2122-2129.(SCI,WOS:000340841700018)
[16] DiFENG(通讯作者).Oxides distribution and microstructure in welding zones from porthole die extrusion[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 765-772.(SCI,WOS:000324003100027)
[15] DiFeng(第一作者).Constitutive Equation and Dynamic Softening Behavior of 7A55Aluminum Alloy during Compression at Elevated Temperatures[J]. Materials Science Forum, 2017, 898: 291-299.(EI)
[14] 冯迪(第一作者).晶粒尺寸对新型高强铝合金热变形行为的影响[J]. 稀有金属材料与工程, 2016, 46(8): 2104-2110.(SCI,WOS:000382410400034)
[13] 冯迪(第一作者).非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-109.(SCI,WOS:000418584100012)
[12] 冯迪(第一作者).7A55铝合金-RRA态厚板组织和性能及其均匀性的多因素影响[J]. 中国有色金属学报, 2019,29(6): 1150-1160.(EI)
[11] 冯迪(第一作者).非等温回归再时效对7055 铝合金中厚板的厚向组织及性均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010.(EI)
[10] 冯迪(第一作者).预时效温度及回归加热速率对7150 铝合金显微组织性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181.(EI)
[9] 冯迪(第一作者).预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150.(EI)
[8] 冯迪(第一作者).7A55 铝合金厚板的微观组织和性能不均匀性[J]. 中南大学学报(自然科学版), 2015, 46(8): 2824-2830.(EI)
[7] 冯迪(通讯作者). 基于Archard 理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报(自然科学版), 2009, 40(5): 1245-1251.(EI)
[6] 冯迪(第一作者).铝合金空心型材挤压焊合问题的研究进展[J]. 材料导报, 2013, 27(10): 6-9.(EI)
[5] 冯迪(第一作者).双级时效对Al-8Zn-2Mg-2Cu合金组织及性能的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(5): 642-650.(CSCD)
[4] 冯迪(通讯作者).铝合金方管分流焊合挤压过程的有限元分析[J]. 中国机械工程, 2009, 20(24): 2393-2397.(CSCD)
[3] 冯迪(通讯作者).5083 铝合金法兰盘锻造过程的数值模拟[J]. 热加工工艺, 2008, 37(13): 53-58.(CSCD)
[2] 冯迪(第一作者).H13 钢热变形行为的数学模型[J]. 钢铁, 2010, 45(5): 52-56.(CSCD)
[1] 冯迪(第一作者).H13 钢制分流模低周疲劳寿命的预测方法及其应用[J]. 钢铁研究学报, 2010, 22(9): 43-47.(CSCD)
合作发表
[13] Jun Zhou, Hengcheng Liao, Hongmei Chen, Di Feng, Weijun Zhu. Realizing strength-ductility combination of Fe3.5Ni3.5Cr2MnAl0.7 high-entropy alloy via coherent dual-phase structure[J]. Vacuum, 2023, 215: 112297.
[12] Puli Cao, Guilan Xie, Chengbo Li, Daibo Zhu, Di Feng, Bo Xiao, Cai Zhao. Investigation of the Quenching Sensitivity of the Mechanical and Corrosion Properties of 7475 Aluminum Alloy[J]. Metals, 2023, 13, 1656. https://doi.org/10.3390/met13101656.
[11] Lin GaoYong, Xiao MengQiong, Feng Di, et al. Microstructural and mechanical properties of ZA10 alloy tubes and their weld seams prepared by Conform continuous extrusion[J]. Rare Metals, 2020, 39(6): 707-715.
[10] Qianghao Zang, Di Feng, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling[J]. Journal of Alloys and Compounds, 2020,1847: 56481
[9] Gaoyong Lin, Xin Tan, Di Feng, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al–13Si–7.5Cu–1Mg alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 1013-1020
[8] Gaoyong LIN, Kun LI, Di FENG, et al. Effects of La−Ce addition on microstructure and mechanical properties of Al−18Si−4Cu−0.5Mg alloy[J]. Transaction Nonferrous Metals Society of China, 2019, 29: 1592−1600.
[7] Gaoyong Lin, Weiyuan Song, Di Feng, et al. Study of microstructure and mechanical property heterogeneity throughout the wall thickness of high strength aluminum alloy thick-wall pipe[J]. Journal of Materials Research, 2019, 34(15): 2735-2745.
[6] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy[J].Journal of Materials Engineering and Performance, 2020,29: 8414–8421
[5] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Dynamic Compression Behavior of a Mg–Gd‑Based Alloy at Elevated Temperature[J]. Metals and Materials International, 2019.
[4] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Effects of Gd, Y Content on the Microstructure and Mechanical Properties of Mg-Gd-Y-Nd-Zr Alloy[J]. Metals,2018, 8, 790
[3] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effects of thermomechanical processing on the microstructure, texture and mechanical properties of a Mg-Gd-based alloy[J]. Materials Science & Engineering A, 2019 ,759:172-180.
[2] LIU Jian, LIN Gao-yong, FENG Di, et al. Effects of process parameters and die geometry on longitudinal weldsquality in aluminum porthole die extrusion process[J]. Journal of Central South University of Technology, 2010, 17: 688−696
[1] Tang Chang Ping, Yang Liu, Feng Di, et al. Investigation on Microstructure and Mechanical Properties of a Mg-Gd-Y-Zr Alloy Plate[J]. Materials and Manufacturing Processes, 2012, 27(6): 609-613.
教改论文列表
[1] 冯迪.工程教育认证背景下的材料科学基础双语教学改革与实践[J].
中国现代教育装备, 2018, 283: 88-91.
[2] 冯迪.基于“产出导向”的金属材料工程专业实践教学体系构建[J].
中国现代教育装备, 2023, 423: 147-149.
[3] 冯迪.基于“成果导向”的金属材料工程本科拔尖人才培养机制研究[J].
中国现代教育装备, 2024, 425: 182-186.
专/编著列表
1. 冯迪《高强耐蚀铝合金厚板的均匀制备技术》 2019.12
2. 冯迪《Aluminum Alloys and Aluminum-Based Matrix Composites》2023.12
车用高性能铝合金卡钳活塞关键制备技术的研究与推广
轻质高强耐磨卡钳活塞的关键制备技术研发(GY2021020)
超高强耐蚀航空铝合金挤压件的关键制备研发(GY2021003)
基于非等温相变行为的AlZnMgCu合金厚板组织性能均匀性的积分回归调控机理 51801082 主持
非等温条件下航空AlZnMgCu合金厚板回归过程中的“积分效应”研究 BK20160560 主持
积分效应对7A55铝合金非等温回归行为的影响研究 16KJB430010 主持
航空用铝合金及其厚板的非等温析出强韧化机理 主持
铝合金空心型材焊合质量的影响因素及焊合机理研究 主持
一种包含超小直径模芯的铝合金水冷板分流挤压模具 ZL 201320576082.5
学术论文列表
第一和通讯
[35] Feng Di(通讯作者). The Effect of Heat Ageing on the Microstructure and Properties of Spray-Deposited AlZnMgCu Alloy Extruded Plates[J]. Materials, 2024, 17(15).(DOI:10.3390/ma17153706. WOS: 001287059800001)
[34] Feng Di(第一作者).The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review[J]. Journal of Central South University, 2023, 30: 2833-2866. (DOI: https://doi.org/10.1007/s11771-023-5439-9. WOS:001098684500001)
[33] Feng Di(第一作者). Aluminum Alloys and Aluminum-Based Matrix Composites[J]. Metals, 2023, 13(11):1870 (DOI: 10.3390/met13111870, WOS:001114583300001)
[32] Feng Di(通讯作者). The precipitates and properties evolution behaviors of AlZnMgCu alloy during the retrogression process with slow heating[J]. Journal of materials research and technology, 2023, 26: 3544-3557. (http://doi.org/10.1016/j.jmrt.2023.08.122, WOS:001107113300001)
[31] Feng Di(第一作者). Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy during Hot Deformation[J]. Metals, 2022, 12(11):1982 (SCI. https://doi.org/10.3390/met12111982, WOS:000895210600001)
[30] Feng Di(通讯作者). Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate[J]. Journal of Central South University, 2022, 29(3): 960-972.(SCI, DOI 10.1007/s11771-022-4960-6, WOS:000780982300018)
[29] 冯迪(第一作者). 喷射沉积过共晶AlSiCuMg合金的时效行为及力学性能[J].中国有色金属学报, 2023,33(5):1399-1412(EI, DOI: 10.11817/j.ysxb.1004.0609.2022-43537)
[28] 冯迪(通讯作者). 喷射成形AlSiCuMg合金的热变形组织及再结晶行为[J].金属学报, 2022, 58(7): 932-943(SCI, DOI 10.11900/0412.1961.2021.00329, WOS:000816121700009)
[27] 冯迪(第一作者). 喷射成形过共晶AlSiCuMg合金的固溶行为[J].金属学报, 2022, 2002, 58(9):1129-1141(SCI, DOI 10.11900/0412.1961.2021.00079, WOS:000841981600004)
[26] 冯迪(第一作者). 喷射成形7055铝合金初生相在形变前预热处理中的演变行为[J].稀有金属材料与工程, 2020, 49(12): 4253-4262(SCI, WOS:000607448600033)
[25] 冯迪(通讯作者). 7055铝合金的非等温双级时效行为[J].金属学报, 2020, 56(11): 1497-1507(SCI,WOS:000584345200006)
[24] 冯迪(通讯作者). 非等温时效对7B50铝合金组织及性能的影响[J].金属学报, 2020, 56(9): 1255-1265(SCI,WOS:000576758600008)
[23] 冯迪(通讯作者). 喷射成形AlSi25Cu4Mg 耐磨合金的本构方程及热加工图[J].材料导报, 2020, 34(5): 10120-10126
[22] Di Feng(第一作者). Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy[J]. Metals and Materials International, 2018, 24(1): 195-204.(SCI,WOS:000419534500024)
[21] D. Feng(第一作者). Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature[J]. Materials Science & Engineering A, 2014, 608: 63-72.(SCI,WOS:000338404800009)
[20] D. Feng(第一作者).The effect of pre-ageing temperature and retrogression heating rate on the microstructureand properties of AA7055 [J]. Materials Science and Engineering: A, 2013, 588: 34-42.(SCI,WOS:000328176900006)
[19] D. Feng(第一作者).Non-isothermal “retrogression and re-ageing” treatment schedule for AA7055 thick plate[J]. Materials and Design, 2014, 60: 208-217.(SCI,WOS:000336668000026)
[18] DiFENG(第一作者).Rate controlling Mechanisms in Hot Deformation of 7A55 aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 24-35.(SCI,WOS:000330225400004)
[17] DiFENG(第一作者).Non-isothermal retrogression kinetics for grain boundary precipitate of 7A55 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2014, 24: 2122-2129.(SCI,WOS:000340841700018)
[16] DiFENG(通讯作者).Oxides distribution and microstructure in welding zones from porthole die extrusion[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 765-772.(SCI,WOS:000324003100027)
[15] DiFeng(第一作者).Constitutive Equation and Dynamic Softening Behavior of 7A55Aluminum Alloy during Compression at Elevated Temperatures[J]. Materials Science Forum, 2017, 898: 291-299.(EI)
[14] 冯迪(第一作者).晶粒尺寸对新型高强铝合金热变形行为的影响[J]. 稀有金属材料与工程, 2016, 46(8): 2104-2110.(SCI,WOS:000382410400034)
[13] 冯迪(第一作者).非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-109.(SCI,WOS:000418584100012)
[12] 冯迪(第一作者).7A55铝合金-RRA态厚板组织和性能及其均匀性的多因素影响[J]. 中国有色金属学报, 2019,29(6): 1150-1160.(EI)
[11] 冯迪(第一作者).非等温回归再时效对7055 铝合金中厚板的厚向组织及性均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010.(EI)
[10] 冯迪(第一作者).预时效温度及回归加热速率对7150 铝合金显微组织性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181.(EI)
[9] 冯迪(第一作者).预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150.(EI)
[8] 冯迪(第一作者).7A55 铝合金厚板的微观组织和性能不均匀性[J]. 中南大学学报(自然科学版), 2015, 46(8): 2824-2830.(EI)
[7] 冯迪(通讯作者). 基于Archard 理论的挤压次数对模具磨损量的影响分析[J]. 中南大学学报(自然科学版), 2009, 40(5): 1245-1251.(EI)
[6] 冯迪(第一作者).铝合金空心型材挤压焊合问题的研究进展[J]. 材料导报, 2013, 27(10): 6-9.(EI)
[5] 冯迪(第一作者).双级时效对Al-8Zn-2Mg-2Cu合金组织及性能的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(5): 642-650.(CSCD)
[4] 冯迪(通讯作者).铝合金方管分流焊合挤压过程的有限元分析[J]. 中国机械工程, 2009, 20(24): 2393-2397.(CSCD)
[3] 冯迪(通讯作者).5083 铝合金法兰盘锻造过程的数值模拟[J]. 热加工工艺, 2008, 37(13): 53-58.(CSCD)
[2] 冯迪(第一作者).H13 钢热变形行为的数学模型[J]. 钢铁, 2010, 45(5): 52-56.(CSCD)
[1] 冯迪(第一作者).H13 钢制分流模低周疲劳寿命的预测方法及其应用[J]. 钢铁研究学报, 2010, 22(9): 43-47.(CSCD)
合作发表
[13] Jun Zhou, Hengcheng Liao, Hongmei Chen, Di Feng, Weijun Zhu. Realizing strength-ductility combination of Fe3.5Ni3.5Cr2MnAl0.7 high-entropy alloy via coherent dual-phase structure[J]. Vacuum, 2023, 215: 112297.
[12] Puli Cao, Guilan Xie, Chengbo Li, Daibo Zhu, Di Feng, Bo Xiao, Cai Zhao. Investigation of the Quenching Sensitivity of the Mechanical and Corrosion Properties of 7475 Aluminum Alloy[J]. Metals, 2023, 13, 1656. https://doi.org/10.3390/met13101656.
[11] Lin GaoYong, Xiao MengQiong, Feng Di, et al. Microstructural and mechanical properties of ZA10 alloy tubes and their weld seams prepared by Conform continuous extrusion[J]. Rare Metals, 2020, 39(6): 707-715.
[10] Qianghao Zang, Di Feng, et al. Microstructure and mechanical properties of Al-7.9Zn-2.7Mg-2.0Cu (wt%) alloy strip fabricated by twin roll casting and hot rolling[J]. Journal of Alloys and Compounds, 2020,1847: 56481
[9] Gaoyong Lin, Xin Tan, Di Feng, et al. Effects of conform continuous extrusion and heat treatment on the microstructure and mechanical properties of Al–13Si–7.5Cu–1Mg alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 1013-1020
[8] Gaoyong LIN, Kun LI, Di FENG, et al. Effects of La−Ce addition on microstructure and mechanical properties of Al−18Si−4Cu−0.5Mg alloy[J]. Transaction Nonferrous Metals Society of China, 2019, 29: 1592−1600.
[7] Gaoyong Lin, Weiyuan Song, Di Feng, et al. Study of microstructure and mechanical property heterogeneity throughout the wall thickness of high strength aluminum alloy thick-wall pipe[J]. Journal of Materials Research, 2019, 34(15): 2735-2745.
[6] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg–Gd-Based Alloy[J].Journal of Materials Engineering and Performance, 2020,29: 8414–8421
[5] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Dynamic Compression Behavior of a Mg–Gd‑Based Alloy at Elevated Temperature[J]. Metals and Materials International, 2019.
[4] Changping Tang, Kai Wen, Wenhui Liu, Di Feng, et al. Effects of Gd, Y Content on the Microstructure and Mechanical Properties of Mg-Gd-Y-Nd-Zr Alloy[J]. Metals,2018, 8, 790
[3] Changping Tang, Xuezhao Wang, Wenhui Liu, Di Feng, et al. Effects of thermomechanical processing on the microstructure, texture and mechanical properties of a Mg-Gd-based alloy[J]. Materials Science & Engineering A, 2019 ,759:172-180.
[2] LIU Jian, LIN Gao-yong, FENG Di, et al. Effects of process parameters and die geometry on longitudinal weldsquality in aluminum porthole die extrusion process[J]. Journal of Central South University of Technology, 2010, 17: 688−696
[1] Tang Chang Ping, Yang Liu, Feng Di, et al. Investigation on Microstructure and Mechanical Properties of a Mg-Gd-Y-Zr Alloy Plate[J]. Materials and Manufacturing Processes, 2012, 27(6): 609-613.
教改论文列表
[1] 冯迪.工程教育认证背景下的材料科学基础双语教学改革与实践[J].
中国现代教育装备, 2018, 283: 88-91.
[2] 冯迪.基于“产出导向”的金属材料工程专业实践教学体系构建[J].
中国现代教育装备, 2023, 423: 147-149.
[3] 冯迪.基于“成果导向”的金属材料工程本科拔尖人才培养机制研究[J].
中国现代教育装备, 2024, 425: 182-186.
专/编著列表
1. 冯迪《高强耐蚀铝合金厚板的均匀制备技术》 2019.12
2. 冯迪《Aluminum Alloys and Aluminum-Based Matrix Composites》2023.12
1. 2022/05-至今 南京理工大学,博士后
2. 2019/09-2021/09 华中科技大学,博士后
3. 2010/09-2014/12 中南大学,材料加工工程,博士;
4. 2007/09-2010/05 中南大学,材料加工工程,硕士;
5. 2001/09-2005/06 安徽工程大学,材料成型及控制工程,学士
课程
本科 —《材料科学基础》、《金属材料及热处理》、《热处理原理》、《模具材料及其强韧化》、 《材料成形设备及自动化》
研究生 —《材料表面与界面》、《现代工程材料》、《材料科学前沿》
教改/竞赛/获奖
全国大学生热处理创新创业大赛一等奖2次,三等奖4次;江苏省研究生创新创业计划项目3项;江苏省本科生创新创业计划项目6项;江苏科技大学校级优秀本科论文5项,省级优秀本科论文1项,省级优秀团队论文1项;江苏省材料学会教学成果一等奖1项。